首页> 外文期刊>Neurocomputing >Control and Optimization of a Bionic Robotic Fish Through a Combination of CPG model and PSO
【24h】

Control and Optimization of a Bionic Robotic Fish Through a Combination of CPG model and PSO

机译:通过CPG模型和PSO组合控制和优化仿生机器人鱼类

获取原文
获取原文并翻译 | 示例

摘要

Swimming speed and propulsive efficiency are critical indicators of a self-propelled bionic robotic fish in terms of swimming performance. This paper is devoted to achieving a maximum swimming speed and a higher propulsive efficiency for a four-joint robotic fish. A Newton-Euler method based dynamic model in conjunction with a central pattern generator (CPG) network serves to theoretically estimate fish-like swimming performance. In particular, each CPG unit based on limit cycles serves to drive one joint of the robotic fish. The overall CPG model is able to generate rhythmic signals for multimode swimming. To obtain the maximum average speed, a particle swarm optimization (PSO) algorithm is further utilized to optimize the feature parameters of the CPG model. Furthermore, the higher propulsive efficiency is sought within the same control framework. Simulations and experiments on the actual robotic fish demonstrate the improved propulsive performance and the effectiveness of the proposed control framework. (C) 2019 Elsevier B.V. All rights reserved.
机译:游泳速度和推进效率是在游泳表现方面是自推进仿生机器人鱼类的关键指标。本文致力于实现最大的游泳速度和四联接机器人鱼的更高推进效率。基于Newton-Euler方法的动态模型与中心图案发生器(CPG)网络配合到理论上估计鱼类游泳性能。特别地,基于极限循环的每个CPG单元用于驱动机器人鱼的一个接合。整体CPG模型能够为多模游泳产生节奏信号。为了获得最大平均速度,还用于优化CPG模型的特征参数来优化粒子群优化(PSO)算法。此外,在同一控制框架内寻求更高的推进效率。实际机器人鱼类的仿真和实验证明了提高的推进性能和提出控制框架的有效性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第14期|144-152|共9页
  • 作者单位

    Shandong Jianzhu Univ Sch Informat & Elect Engn Jinan 250101 Shandong Peoples R China;

    Shandong Jianzhu Univ Sch Informat & Elect Engn Jinan 250101 Shandong Peoples R China;

    Shandong Jianzhu Univ Sch Informat & Elect Engn Jinan 250101 Shandong Peoples R China;

    Shandong Jianzhu Univ Sch Informat & Elect Engn Jinan 250101 Shandong Peoples R China;

    Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China|Peking Univ Beijing Innovat Ctr Engn Sci & Adv Technol Beijing 100871 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Central pattern generator (CPG); Motion optimization; Bionic robotic fish; Dynamic modeling; PSO;

    机译:中央图案发生器(CPG);运动优化;仿生机器人鱼;动态建模;PSO;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号