首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >CPG Network Optimization for a Biomimetic Robotic Fish via PSO
【24h】

CPG Network Optimization for a Biomimetic Robotic Fish via PSO

机译:通过PSO优化仿生机器人鱼的CPG网络

获取原文
获取原文并翻译 | 示例

摘要

In this brief, we investigate the parameter optimization issue of a central pattern generator (CPG) network governed forward and backward swimming for a fully untethered, multijoint biomimetic robotic fish. Considering that the CPG parameters are tightly linked to the propulsive performance of the robotic fish, we propose a method for determination of relatively optimized control parameters. Within the framework of evolutionary computation, we use a combination of dynamic model and particle swarm optimization (PSO) algorithm to seek the CPG characteristic parameters for an enhanced performance. The PSO-based optimization scheme is validated with extensive experiments conducted on the actual robotic fish. Noticeably, the optimized results are shown to be superior to previously reported forward and backward swimming speeds.
机译:在本文中,我们研究了中央模式发生器(CPG)网络的参数优化问题,该网络控制着完全束缚的多关节仿生机器人鱼的前向和后向游泳。考虑到CPG参数与机器人鱼的推进性能紧密相关,我们提出了一种确定相对最佳控制参数的方法。在进化计算的框架内,我们结合使用动态模型和粒子群优化(PSO)算法来寻找CPG特征参数以提高性能。基于PSO的优化方案已通过对实际机器人鱼进行的大量实验得到验证。值得注意的是,优化结果显示优于先前报告的前进和后退游泳速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号