首页> 外文期刊>Neurocomputing >Distributed extremum seeking control of multi-agent systems with unknown dynamics for optimal resource allocation
【24h】

Distributed extremum seeking control of multi-agent systems with unknown dynamics for optimal resource allocation

机译:动态最优的多智能体系统的分布式极值搜索控制,以实现最佳资源分配

获取原文
获取原文并翻译 | 示例

摘要

The paper considers a class of equality constrained resource allocation problems for dynamically coupled multi-agent systems. It is assumed that the mathematical structure of each agent's dynamics and its local cost function are unknown but depend on the entire resource allocation vector. A distributed dual-mode extremum seeking control is proposed. It is shown that the distributed approach decouples the local contribution of each agent locally while guaranteeing a solution of the network wide optimization problem subject to the resource allocation constraints. The agents operate over a communication network which enables the application of a dynamic consensus algorithm to generate local estimates of the total network cost. Locally, each agent implements a parameter estimation routine to estimate the gradient of the total cost with respect to the local action. Each agent uses its local gradient estimate to implement a dual mode extremum seeking controller that guarantees satisfaction of the resource allocation constraints. Two simulation examples are provided to demonstrate the effectiveness of the proposed technique. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文考虑了动态耦合多主体系统的一类等式约束资源分配问题。假定每个代理动力学的数学结构及其局部成本函数是未知的,但取决于整个资源分配向量。提出了一种分布式双模极值寻求控制。结果表明,分布式方法可以在保证资源分配约束条件下解决网络优化问题的同时,在本地解耦每个代理的本地贡献。代理在通信网络上运行,该通信网络允许应用动态共识算法来生成总网络成本的本地估计。在本地,每个代理程序执行参数估计例程,以估计总成本相对于本地操作的梯度。每个代理使用其本地梯度估计来实现双模式极值搜索控制器,该控制器保证满足资源分配约束。提供了两个仿真示例,以演示所提出技术的有效性。 (C)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号