首页> 外文期刊>Neurocomputing >A GPSO-optimized convolutional neural networks for EEG-based emotion recognition
【24h】

A GPSO-optimized convolutional neural networks for EEG-based emotion recognition

机译:GPSO优化的卷积神经网络用于基于EEG的情绪识别

获取原文
获取原文并翻译 | 示例

摘要

An urgent problem in the field of deep learning is the optimization of model construction, which frequently hinders its performance and often needs to be designed by experts. Optimizing the hyperparameters remains a substantial obstacle in designing deep learning models, such as CNNs, in practice. In this paper, we propose an automatical optimization framework using binary coding system and GPSO with gradient penalties to select the structure. Such swarm intelligence optimization approaches have been used but not extensively exploited, and the existing work focuses on models with a fixed depth of networks. We design an experiment to arouse three types of emotion states for each subject, and simultaneously collect EEG signals corresponding to each emotion category. The GPSO-based method efficiently explores the solution space, allowing CNNs to obtain competitive classification performance over the dataset. Results indicate that our method based on the GPSO-optimized CNN model enables us to achieve a prominent classification accuracy, and the proposed method provides an effective automatic optimization framework for CNNs of the emotion recognition task with an uncertain depth of networks. (C) 2019 Elsevier B.V. All rights reserved.
机译:深度学习领域的一个紧迫问题是模型构建的优化,这经常会阻碍其性能,并且经常需要由专家进行设计。在实践中,优化超参数仍然是设计深度学习模型(例如CNN)的重大障碍。在本文中,我们提出了一种使用二进制编码系统和GPSO并带有梯度惩罚的自动优化框架来选择结构。这种群体智能优化方法已被使用,但并未得到广泛利用,并且现有工作集中在具有固定深度网络的模型上。我们设计了一个实验来激发每个对象的三种情绪状态,并同时收集与每个情绪类别相对应的EEG信号。基于GPSO的方法有效地探索了解决方案空间,使CNN可以在数据集上获得具有竞争力的分类性能。结果表明,我们基于GPSO优化的CNN模型的方法使我们能够实现突出的分类精度,并且该方法为网络深度不确定的情感识别任务的CNN提供了有效的自动优化框架。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号