首页> 外文期刊>Neurocomputing >A 1-norm regularized linear programming nonparallel hyperplane support vector machine for binary classification problems
【24h】

A 1-norm regularized linear programming nonparallel hyperplane support vector machine for binary classification problems

机译:二元分类问题的1-范数正则化线性规划非并行超平面支持向量机

获取原文
获取原文并翻译 | 示例

摘要

This research proposes a 1-norm regularized linear programming nonparallel hyperplane support vector machine (LNSVM) model to solve binary classification problems and enhance the robustness performance. Numerous nonparallel support vector machine (SVM) models have been studied with outstanding performance on classification tasks. However, most nonparallel SVM models require two independent models to determine hyperplanes. In addition, due to the involvement of the 2-norm terms, traditional SVM models may suffer from the lack of robustness to outliers and irrelevant features. Therefore, the LNSVM model is proposed by reformulating a typical nonparallel SVM model through the 1-norm regularization. By applying the exterior penalty theory, the proposed LNSVM model is converted to the dual exterior penalty problem, which is solved by the Newton-Armijo algorithm. The essential differences that distinguish the LNSVM model from other nonparallel SVM models are: (1) Different from typical nonparallel SVM models, which solve two quadratic programming (QP) problems, the proposed LNSVM model determines two nonparallel hyperplanes simultaneously by solving a single linear programming (LP) model; (2) The robustness performance of the proposed LNSVM model has been enhanced to tolerate noisy data through the involvement of 1-norm loss function, which can also eliminate redundant features by generating sparse solution during the training procedure. The performance of the proposed LNSVM model is tested through a comparison with state-of-art SVM-based classifiers using a synthetic dataset and 11 practical benchmark datasets. The experimental results show the superiority of the proposed LNSVM model, by achieving better classification performance regarding accuracy, sensitivity, specificity, and removing redundant features synchronously. (C) 2019 Elsevier B.V. All rights reserved.
机译:该研究提出了一种1-范数正则化线性规划非并行超平面支持向量机(LNSVM)模型,以解决二进制分类问题并提高鲁棒性。已经研究了许多非并行支持向量机(SVM)模型,它们在分类任务上具有出色的性能。但是,大多数非并行SVM模型都需要两个独立的模型来确定超平面。此外,由于涉及2范数项,传统SVM模型可能会遭受对异常值和相关特征缺乏鲁棒性的困扰。因此,通过1-范数正则化重构典型的非并行SVM模型,提出了LNSVM模型。通过应用外部罚分理论,将所提出的LNSVM模型转换为双重外部罚分问题,并通过Newton-Armijo算​​法解决了该问题。 LNSVM模型与其他非并行SVM模型的本质区别是:(1)与典型的非并行SVM模型不同,后者解决了两个二次规划(QP)问题,所提出的LNSVM模型通过求解单个线性规划同时确定两个非并行超平面(LP)模型; (2)所提出的LNSVM模型的鲁棒性得到了增强,可以通过参与1-norm损失函数来容忍噪声数据,该函数还可以通过在训练过程中生成稀疏解来消除冗余特征。通过使用综合数据集和11个实用基准数据集与基于SVM的最新分类器进行比较,对所提出的LNSVM模型的性能进行了测试。实验结果表明,通过在准确性,敏感性,特异性和同步删除冗余特征方面获得更好的分类性能,所提出的LNSVM模型具有优越性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号