首页> 外文期刊>Neurocomputing >Developing parallel ant colonies filtered by deep learned constrains for predicting RNA secondary structure with pseudo-knots
【24h】

Developing parallel ant colonies filtered by deep learned constrains for predicting RNA secondary structure with pseudo-knots

机译:发展由深度学习的约束过滤的平行蚂蚁菌落,以预测带有假结的RNA二级结构

获取原文
获取原文并翻译 | 示例

摘要

RNA plays important roles in cells besides being a simple carrier of genetic information. RNA secondary structure prediction is an efficient way to explore its biochemical function. RNA secondary structure prediction with pseudo-knots is really difficult, which has been proven as an NP-hard problem. Many of the existing predictions seemed to be limited not only by the quality of the search algorithms but also by the quality of the objective functions used. In this paper, a novel prediction model called DpacoRNA is proposed to improve the accuracy of the RNA secondary structure prediction with pseudo-knots, which mainly consists of two features: a parallel search algorithm and learning structural constraints using a deep model. First, based on the base-paired and single-stranded probabilities as multiple objective functions, DpacoRNA applied a parallel ant colony optimization strategy to predict the RNA secondary structure. Second, a bi-directional LSTM recurrent neural network was used to learn the base-pairing constraints. Finally, the constraints learned from the deep model were applied to the output of parallel ant colonies to refine the final secondary structures. To examine the strength and the weakness of the proposed method, multiple RNA types, including RNase P RNA, 5s rRNA, hammerhead ribozyme, transfer RNA, and tmRNA, were used to carefully benchmark DpacoRNA with other state-of-the-art solutions. The final results showed that DpacoRNA was competitive to the other methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:RNA除了是遗传信息的简单载体外,在细胞中也起着重要作用。 RNA二级结构预测是探索其生化功能的有效途径。用伪结预测RNA二级结构确实非常困难,这已被证明是NP难题。许多现有的预测似乎不仅受到搜索算法质量的限制,而且还受到所使用目标函数质量的限制。本文提出了一种新的预测模型DpacoRNA,以提高伪结RNA二级结构预测的准确性,该模型主要包括两个特征:并行搜索算法和使用深度模型学习结构约束。首先,基于碱基对和单链概率作为多个目标函数,DpacoRNA应用了并行蚁群优化策略来预测RNA二级结构。其次,使用双向LSTM递归神经网络来学习碱基配对约束。最后,将从深度模型中学习到的约束应用于平行蚁群的输出,以完善最终的二级结构。为了检查所提出方法的优缺点,我们使用了多种RNA类型,包括RNase P RNA,5s rRNA,锤头状核酶,转移RNA和tmRNA,来将DpacoRNA与其他最新解决方案进行仔细的基准比较。最终结果表明,DpacoRNA与其他方法相比具有竞争力。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第7期|104-114|共11页
  • 作者

  • 作者单位

    Soochow Univ Sch Comp Sci & Technol Suzhou 215006 Peoples R China|Soochow Univ Prov Key Lab Comp Informat Proc Technol Suzhou 215006 Peoples R China;

    China Minsheng Bank Suzhou Branch Informat Technol Dept Suzhou 215006 Peoples R China;

    Soochow Univ Sch Comp Sci & Technol Suzhou 215006 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    RNA secondary structure; Pseudo-knots; Deep learned constrains; Parallel ant colonies; Recurrent neural network;

    机译:RNA二级结构;假结;博学多才的约束;平行蚁群;递归神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号