首页> 外文期刊>Neurocomputing >Mutual information-based dropout: Learning deep relevant feature representation architectures
【24h】

Mutual information-based dropout: Learning deep relevant feature representation architectures

机译:基于互信息的辍学:学习深入的相关特征表示架构

获取原文
获取原文并翻译 | 示例

摘要

We propose a new regularization strategy called DropMI, which is a generalization of Dropout for the regularization of networks that introduces mutual information (MI) dynamic analysis. The standard Dropout randomly drops a certain proportion of neural units, according to the Bernoulli distribution, thereby resulting in the loss of some important hidden feature information. In DropMI, we first evaluate the importance of each neural unit in the feature representation of the hidden layer based on the MI between it and the target. We then construct a new binary mask matrix based on the sorting distribution of MI, thus developing a dynamic DropMI strategy that highlights the important neural units that are beneficial to the feature representation. The results from the MNIST, NORB, CIFAR-10, CIFAR-100, SVHN, and Multi-PIE datasets indicate that, relative to other state-of-the-art regularization methods based on the benchmark autoencoder and convolutional neural networks, our method has better feature representation performance and effectively reduces the overfitting of the model. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们提出了一种称为DropMI的新正则化策略,该策略是Dropout的泛化,用于引入互信息(MI)动态分析的网络正则化。根据伯努利分布,标准的Dropout随机丢弃一定比例的神经单元,从而导致某些重要的隐藏特征信息丢失。在DropMI中,我们首先根据隐层与目标之间的MI来评估每个神经单元在隐层特征表示中的重要性。然后,我们根据MI的排序分布构造一个新的二进制掩码矩阵,从而开发出一种动态DropMI策略,该策略突出显示了对特征表示有利的重要神经单元。 MNIST,NORB,CIFAR-10,CIFAR-100,SVHN和Multi-PIE数据集的结果表明,相对于其他基于基准自动编码器和卷积神经网络的最新正则化方法,我们的方法具有更好的特征表示性能,并有效减少了模型的过拟合。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号