首页> 外文期刊>IEEE transactions on industrial informatics >Hierarchical Quality-Relevant Feature Representation for Soft Sensor Modeling: A Novel Deep Learning Strategy
【24h】

Hierarchical Quality-Relevant Feature Representation for Soft Sensor Modeling: A Novel Deep Learning Strategy

机译:软传感器建模的等级质量相关特征表示:一种新的深度学习策略

获取原文
获取原文并翻译 | 示例

摘要

Deep learning is a recently developed feature representation technique for data with complicated structures, which has great potential for soft sensing of industrial processes. However, most deep networks mainly focus on hierarchical feature learning for the raw observed input data. For soft sensor applications, it is important to reduce irrelevant information and extract quality-relevant features from the raw input data for quality prediction. To deal with this problem, a novel deep learning network is proposed for quality-relevant feature representation in this article, which is based on stacked quality-driven autoencoder (SQAE). First, a quality-driven autoencoder (QAE) is designed by exploiting the quality data to guide feature extraction with the constraint that the potential features should largely reconstruct the input layer data and the quality data at the output layer. In this way, quality-relevant features can be captured by QAE. Then, by stacking multiple QAEs to construct the deep SQAE network, SQAE can gradually reduce irrelevant features and learn hierarchical quality-relevant features. Finally, the high-level quality-relevant features can be directly applied for soft sensing of the quality variables. The effectiveness and flexibility of the proposed deep learning model are validated on an industrial debutanizer column process.
机译:深度学习是最近开发的具有复杂结构的数据的特征表示技术,其具有巨大的工业过程软感的潜力。然而,大多数深网络主要关注原始观察到的输入数据的分层特征学习。对于软传感器应用,重要的是减少与质量预测的原始输入数据中的无关信息和提取质量相关的功能。要解决这个问题,提出了一种新的深入学习网络,在本文中提出了本文的质量相关的特征表示,这是基于堆叠的质量驱动的自动化器(SQAE)。首先,通过利用要引导特征提取的质量数据来设计质量驱动的AutoEncoder(QAE),其中包含电位特征在很大程度上应该在输出层处重建输入层数据和质量数据的约束来设计。以这种方式,QAE可以捕获质量相关的特征。然后,通过堆叠多个QAES来构造深度SQAE网络,SQAE可以逐渐减少无关的特征和学习分层质量相关的特征。最后,可以直接施加高级质量相关的功能以进行质量变量的软感。建议深度学习模型的有效性和灵活性在工业脱丹化器柱过程中验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号