首页> 外文期刊>Journal of visual communication & image representation >Histopathological image classification through discriminative feature learning and mutual information-based multi-channel joint sparse representation
【24h】

Histopathological image classification through discriminative feature learning and mutual information-based multi-channel joint sparse representation

机译:通过鉴别特征学习和基于相互信息的多通道关节稀疏表示的组织病理学图像分类

获取原文
获取原文并翻译 | 示例

摘要

Histopathological image classification is a very challenging task because of the biological heterogeneities and rich geometrical structures. In this paper, we propose a novel histopathological image classification framework, which includes the discriminative feature learning and the mutual information-based multi-channel joint sparse representation. We first propose a stack-based discriminative prediction sparse decomposition (SDPSD) model by incorporating the class labels information to predict deep discriminant features automatically. Subsequently, a mutual information-based multi-channel joint sparse model (MIMCJSM) is presented to jointly encode the common component and particular components of the discriminative features. Especially, the main advantage of the MIMCJSM is the construction of a joint dictionary using a mutual information criterion, which contains a common sub-dictionary and three particular sub-dictionaries. Based on the joint dictionary, the MIMCJSM captures the relationship of multi-channel features, which can improve discriminative ability of joint sparse representation coefficients. Finally, the joint sparse representation coefficients of different levels can be aggregated using the spatial pyramid matching (SPM) model, and the linear support vector machine (SVM) is used as the classifier. Experimental results on ADL and BreaKHis datasets demonstrate that our proposed framework consistently performs better than popular existing classification frameworks. Additionally, it can show promising strong-robustness performance for histopathological image classification. (C) 2020 Elsevier Inc. All rights reserved.
机译:组织病理学图像分类是一个非常具有挑战性的任务,因为生物异质性和富型几何结构。在本文中,我们提出了一种新的组织病理学图像分类框架,其包括鉴别特征学习和基于互信息的多通道关节稀疏表示。我们首先提出基于堆栈的鉴别预测稀疏分解(SDPSD)模型通过结合类标签信息来自动预测深度判别特征。随后,提出了一种基于互信息的多通道关节稀疏模型(MIMCJSM)以共同编码鉴别特征的公共组件和特定组件。特别地,MIMCJSM的主要优点是使用互信息标准来构造联合字典,其包含共同的子字典和三个特定子词典。基于联合字典,MIMCJSM捕获多通道特征的关系,这可以提高关节稀疏表示系数的判别能力。最后,可以使用空间金字塔匹配(SPM)模型来聚合不同级别的关节稀疏表示系数,并且线性支持向量机(SVM)用作分类器。 ADL和BRIFTHIS数据集上的实验结果表明,我们的建议框架始终如一地表现优于流行的现有分类框架。此外,它可以表现出对组织病理学图像分类的有希望的强大性能。 (c)2020 Elsevier Inc.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号