首页> 外文期刊>Neurocomputing >Smote-variants: A python implementation of 85 minority oversampling techniques
【24h】

Smote-variants: A python implementation of 85 minority oversampling techniques

机译:变异变量:85种少数族裔过采样技术的python实现

获取原文
获取原文并翻译 | 示例

摘要

Imbalanced classification problems are definitely around He and Gracia (2009), and a successful approach to avoid the overfitting of majority classes is the synthetic generation of minority training samples Fernandez et al. (2018). Despite the large number of minority oversampling algorithms proposed, open source implementations are available for only a handful of techniques. The package smote-variants provides a Python implementation of 85 oversampling techniques to boost the applications and development in the field of imbalanced learning. The source code, documentation and examples are available in the GitHub repository http://github.com/gykovacs/smote_variants/. (C) 2019 Elsevier B.V. All rights reserved.
机译:He和Gracia(2009)肯定存在分类失衡的问题,避免多数类过度拟合的成功方法是Fernandez等人合成的少数群体训练样本。 (2018)。尽管提出了少数的过采样算法,但是开放源代码实现仅适用于少数技术。软件包smote-variants提供了85种过采样技术的Python实现,以促进不平衡学习领域的应用和开发。源代码,文档和示例可在GitHub存储库中找到,网址为http://github.com/gykovacs/smote_variants/。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号