首页> 外文期刊>Neurocomputing >A novel learning-based global path planning algorithm for planetary rovers
【24h】

A novel learning-based global path planning algorithm for planetary rovers

机译:一种新颖的基于学习的行星漫游车全局路径规划算法

获取原文
获取原文并翻译 | 示例

摘要

Autonomous path planning algorithm is significant to planetary exploration rovers, since relying on commands from Earth will heavily reduce their efficiency of executing exploration missions. In this paper, a novel learning-based algorithm is proposed to deal with global path planning problem for planetary exploration rovers. Specifically, a novel deep convolutional neural network with dual branches (DB-CNN) is designed and trained, which can plan path directly from orbital images of planetary surfaces without implementing environment mapping. Moreover, the planning procedure requires no prior knowledge about planetary surface terrains. Finally, experimental results demonstrate that DB-CNN achieves better performance on global path planning and faster convergence during training compared with the existing Value Iteration Network (VIN). (C) 2019 Elsevier B.V. All rights reserved.
机译:自主路径规划算法对行星探测漫游者很重要,因为依靠地球的命令会大大降低其执行勘探任务的效率。本文提出了一种新颖的基于学习的算法来解决行星探测车的全局路径规划问题。具体来说,设计并训练了一种新颖的具有双分支的深度卷积神经网络(DB-CNN),该网络可以直接从行星表面的轨道图像计划路径,而无需执行环境映射。此外,规划程序不需要有关行星表面地形的先验知识。最后,实验结果表明,与现有的价值迭代网络(VIN)相比,DB-CNN在全局路径规划上具有更好的性能,并且在训练过程中具有更快的收敛性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号