首页> 外文期刊>Neurocomputing >A novel aggregation-based dominance for Pareto-based evolutionary algorithms to configure software product lines
【24h】

A novel aggregation-based dominance for Pareto-based evolutionary algorithms to configure software product lines

机译:基于帕累托进化算法的新型基于聚集的优势,可配置软件产品线

获取原文
获取原文并翻译 | 示例

摘要

In software engineering, optimal feature selection for software product lines (SPLs) is an important and complicated task, involving simultaneous optimization of multiple competing objectives in large but highly constrained search spaces. A feature model is the standard representation of features of all possible products as well as the relationships among them for an SPL. Recently, various multi-objective evolutionary algorithms have been used to search for valid product configurations. However, the issue of the balance between correctness and diversity of solutions obtained in a reasonable time has been found very challenging for these algorithms. To tackle this problem, this paper proposes a novel aggregation-based dominance (ADO) for Pareto-based evolutionary algorithms to direct the search for high-quality solutions. Our method was tested on two widely used Pareto-based evolutionary algorithms: NSGA-II and SPEA2+SDE and validated on nine different SPLs with up to 10,000 features and two real-world SPLs with up to 7 objectives. Our experiments have shown the effectiveness and efficiency of both ADO-based NSGA-II and SPEA2+SDE: (1) Both algorithms could generate 100% valid solutions for all feature models. (2) The performance of both algorithms was improved as measured by the hypervolume metric in 7/9 and 8/9 feature models. (3) Even for the largest tested feature model with 10,000 features, it required under 40 s on a standard desktop to find 100% valid solutions in a single run of both algorithms. (C) 2019 Elsevier B.V. All rights reserved.
机译:在软件工程中,针对软件产品线(SPL)的最佳功能选择是一项重要且复杂的任务,涉及在大型但高度受限的搜索空间中同时优化多个竞争目标。功能模型是所有可能产品的功能以及它们之间对于SPL的关系的标准表示。最近,各种多目标进化算法已用于搜索有效的产品配置。然而,已经发现在合理的时间内获得的解决方案的正确性和多样性之间的平衡问题对于这些算法是非常具有挑战性的。为了解决这个问题,本文针对基于Pareto的进化算法提出了一种新颖的基于聚集的优势(ADO),以指导对高质量解决方案的搜索。我们的方法在两种广泛使用的基于Pareto的进化算法上进行了测试:NSGA-II和SPEA2 + SDE,并在具有多达10,000个功能的9种不同的SPL和具有多达7个目标的两个实际SPL上进行了验证。我们的实验表明基于ADO的NSGA-II和SPEA2 + SDE的有效性和效率:(1)两种算法都可以为所有特征模型生成100%有效的解决方案。 (2)通过7/9和8/9特征模型中的超量度度量,两种算法的性能都得到了改善。 (3)即使对于具有10,000个功能的最大测试功能模型,也需要在标准台式机上在40秒内在两种算法的一次运行中找到100%有效的解决方案。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号