首页> 外文OA文献 >Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines
【2h】

Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines

机译:经典多目标进化算法与软件产品线成对测试播种策略的比较分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Software Product Lines (SPLs) are families of related software products, each with its own set of feature combinations. Their commonly large number of products poses a unique set of challenges for software testing as it might not be technologically or economically feasible to test of all them individually. SPL pairwise testing aims at selecting a set of products to test such that all possible combinations of two features are covered by at least one selected product. Most approaches for SPL pairwise testing have focused on achieving full coverage of all pairwise feature combinations with the minimum number of products to test. Though useful in many contexts, this single-objective perspective does not reflect the prevailing scenario where software engineers do face trade-offs between the objectives of maximizing the coverage or minimizing the number of products to test. In contrast and to address this need, our work is the first to propose a classical multi-objective formalisation where both objectives are equally important. In this paper, we study the application to SPL pairwise testing of four classical multi-objective evolutionary algorithms. We developed three seeding strategies — techniques that leverage problem domain knowledge — and measured their performance impact on a large and diverse corpus of case studies using two well-known multi-objective quality measures. Our study identifies the performance differences among the algorithms and corroborates that the more domain knowledge leveraged the better the search results. Our findings enable software engineers to select not just one solution (as in the case of single-objective techniques) but instead to select from an array of test suite possibilities the one that best matches the economical and technological constraints of their testing context.
机译:软件产品线(SPL)是相关的软件产品系列,每个产品系列都有其自己的功能组合集。他们通常拥有大量产品,这给软件测试带来了一系列独特的挑战,因为单独测试所有产品可能在技术或经济上都不可行。 SPL成对测试旨在选择一组要测试的产品,以便至少一个选定的产品涵盖两个功能的所有可能组合。 SPL成对测试的大多数方法都集中在以最少数量的要测试产品实现所有成对特征组合的全面覆盖。尽管在许多情况下很有用,但这种单目标的观点并不能反映软件工程师确实要在最大化覆盖范围或最小化测试产品数量的目标之间进行权衡的普遍情况。相反,为了满足这种需求,我们的工作是率先提出经典的多目标形式化的,这两个目标都是同等重要的。在本文中,我们研究了四种经典的多目标进化算法在SPL成对测试中的应用。我们开发了三种播种策略(利用问题域知识的技术),并使用两种众所周知的多目标质量度量方法,测量了它们对大量案例研究的绩效影响。我们的研究确定了算法之间的性能差异,并证实了利用领域知识越多,搜索结果越好。我们的发现使软件工程师不仅可以选择一种解决方案(就单目标技术而言),还可以从一系列测试套件中选择最适合其测试环境的经济和技术约束的一种解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号