首页> 外文OA文献 >A parallel evolutionary algorithm for prioritized pairwise testing of software product lines
【2h】

A parallel evolutionary algorithm for prioritized pairwise testing of software product lines

机译:一种用于软件产品线压力成对测试的并行进化算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Software Product Lines (SPLs) are families of related software systems, which provide different feature combinations. Different SPL testing approaches have been proposed. However, despite the extensive and successful use of evolutionary computation techniques for software testing, their application to SPL testing remains largely unexplored. In this paper we present the Parallel Prioritized product line Genetic Solver (PPGS), a parallel genetic algorithm for the generation of prioritized pairwise testing suites for SPLs. We perform an extensive and comprehensive analysis of PPGS with 235 feature models from a wide range of number of features and products, using 3 different priority assignment schemes and 5 product prioritization selection strategies. We also compare PPGS with the greedy algorithm prioritized-ICPL. Our study reveals that overall PPGS obtains smaller covering arrays with an acceptable performance difference with prioritized-ICPL.
机译:软件产品线(SPL)是相关的软件系统系列,提供不同的功能组合。已经提出了不同的SPL测试方法。但是,尽管进化计算技术广泛且成功地用于软件测试,但它们在SPL测试中的应用仍未开发。在本文中,我们介绍了并行优先级产品线遗传求解器(PPGS),这是一种用于生成SPL优先级成对测试套件的并行遗传算法。我们使用3种不同的优先级分配方案和5种产品优先级选择策略,对来自235个特征模型的PPGS进行了广泛而全面的分析,这些模型来自多种特征和产品。我们还将PPGS与贪婪算法优先化的ICPL进行了比较。我们的研究表明,总体而言,PPGS可获得较小的覆盖阵列,与优先的ICPL相比,其性能差异可以接受。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号