首页> 外文期刊>Neurocomputing >An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis
【24h】

An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis

机译:改进的具有多尺度信息的深度卷积神经网络用于轴承故障诊断

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, deep learning technique has been used in mechanical intelligent fault diagnosis and it has achieved much success. Among the deep learning models, convolutional neural network (CNN) is able to accomplish the feature learning without priori knowledge and pattern classification automatically, which makes it to be an end-to-end method. However, CNN may fall into local optimum when lack of useful information in the input signal. Diversity resolution expressions of signal in frequency domain can be obtained by using the filters with different scales (lengths) and more expressions may provide more useful information. Thus, in this paper, an improved CNN named multi-scale cascade convolutional neural network (MC-CNN) is proposed for the classification information enhancement of input. In MC-CNN, a new layer has been added before convolutional layers to construct a new signal of more distinguishable information. The composed signal is obtained by concatenating the signals convolved by original input and kernels of different lengths. To reduce the abundant neurons produced by the multi-scale signal, a convolutional layer with kernels of small size and a pooling layer are added after the multi-scale cascade layer. To verify the proposed method, the original CNNs and MC-CNN are applied to the pattern classification of bearing vibration signal with four conditions under normal and noise environments, respectively. The classification results show that the proposed MC-CNN is more effective than the commonly CNNs. In addition, the lower t-distributed stochastic neighbor embedding (t-SNE) clustered error verifies the effectiveness and necessity of MC layer further. By analyzing the kernels learned from the multi-scale cascade layer, it can be found that the kernels act as filters of different resolutions to make the frequency domain structure of different fault signals more distinguishable. By studying the influence of kernel scale in MC layer on fault diagnosis, it is found that the optimal scale does exist and will be a research emphasis in the future. Moreover, the effectiveness of MC-CNN is verified furthermore by analyzing the application of MC-CNN in bearing fault diagnosis under nonstationary working conditions. (C) 2019 Elsevier B.V. All rights reserved.
机译:近年来,深度学习技术已用于机械智能故障诊断中,并取得了很大的成功。在深度学习模型中,卷积神经网络(CNN)能够在没有先验知识和模式分类的情况下自动完成特征学习,这使其成为一种端到端方法。但是,当输入信号中缺少有用信息时,CNN可能会陷入局部最优状态。可以通过使用具有不同比例(长度)的滤波器来获得频域中信号的分集分辨率表达式,并且更多的表达式可以提供更多有用的信息。因此,本文提出了一种改进的CNN,称为多尺度级联卷积神经网络(MC-CNN),用于增强输入的分类信息。在MC-CNN中,在卷积层之前添加了新层,以构造具有更多可区分信息的新信号。通过合并由原始输入和不同长度的内核卷积的信号获得合成的信号。为了减少多尺度信号产生的丰富神经元,在多尺度级联层之后添加了具有小尺寸内核的卷积层和池化层。为了验证该方法的有效性,将原始的CNN和MC-CNN分别应用于正常和噪声环境下四种条件下的轴承振动信号的模式分类。分类结果表明,提出的MC-CNN比常用的CNN更有效。另外,较低的t分布随机邻居嵌入(t-SNE)聚类误差进一步验证了MC层的有效性和必要性。通过分析从多尺度级联层获得的内核,可以发现内核充当了不同分辨率的滤波器,从而使不同故障信号的频域结构更加可辨。通过研究MC层核尺度对故障诊断的影响,发现最优尺度的确存在,并将成为今后的研究重点。此外,通过分析MC-CNN在非平稳工况下轴承故障诊断中的应用,进一步验证了MC-CNN的有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第24期|77-92|共16页
  • 作者单位

    Hunan Univ, Coll Mech & Vehicle Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China;

    Hunan Univ, Coll Mech & Vehicle Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China;

    Hunan Univ, Coll Mech & Vehicle Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China;

    Hunan Univ, Coll Mech & Vehicle Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Convolutional neural network; Multi-scale cascade; Rolling bearing; Fault diagnosis;

    机译:深度学习;卷积神经网络;多尺度级联;滚动轴承;故障诊断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号