首页> 外文期刊>Neurocomputing >Single image super-resolution incorporating example-based gradient profile estimation and weighted adaptive p-norm
【24h】

Single image super-resolution incorporating example-based gradient profile estimation and weighted adaptive p-norm

机译:结合了基于示例的梯度轮廓估计和加权自适应p范数的单图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Single image super-resolution (SR) aims to estimate a high-resolution (HR) image from only one observed low-resolution (LR) image. It is a severely ill-posed problem that needs image priors to ensure a reliable HR estimation. Since different priors usually emphasize different aspects of image characteristics, it's a big challenge to impose a balanced-and-overall image property constraint on single image SR. In this paper, we cast single image SR into a maximum a posteriori optimization problem and combine two types of complementary priors to answer this challenge. One prior is a novel local gradient field prior derived from example-based gradient field estimation (EGFE) that focuses on recovering the sharpness of gradient profiles. It is good at enhancing the edge sharpness and restoring fine texture details. Whereas the other is a powerful non-local low rank prior implemented in a weighted adaptive p-norm model (WANM). By imposing 1 p penalties adaptive to regional saliency and weighted constraints, the WANM prior performs well in preserving edge smoothness and suppressing image noise and reconstruction artifacts. An improved Split Bregman Iteration method that adaptively attenuates the regularization strength is further developed to solve the proposed EGFE-WANM SR problem. Comprehensive experiments are conducted and the results show that the proposed EGFE-WANM SR method outperforms many state-of-the-art methods in both objective evaluations and subjective visual comparisons. (C) 2019 Elsevier B.V. All rights reserved.
机译:单图像超分辨率(SR)旨在仅从一个观察到的低分辨率(LR)图像估计高分辨率(HR)图像。这是一个病态严重的问题,需要先验图像以确保可靠的HR估计。由于不同的先验通常强调图像特征的不同方面,因此在单个图像SR上施加平衡且总体的图像属性约束是一个很大的挑战。在本文中,我们将单个图像SR转化为最大的后验优化问题,并结合两种类型的互补先验来应对这一挑战。一个先验是从基于示例的梯度场估计(EGFE)中派生的一种新颖的局部梯度场先验,其重点是恢复梯度轮廓的清晰度。它擅长增强边缘清晰度和恢复精细的纹理细节。另一个是在加权自适应p范数模型(WANM)中实现的功能强大的非本地低秩。通过对区域显着性和加权约束施加1 p的惩罚,WANM先验在保持边缘平滑度,抑制图像噪声和重建伪影方面表现出色。为了解决提出的EGFE-WANM SR问题,进一步开发了一种改进的Split Bregman迭代方法,该方法自适应地衰减了正则化强度。进行了全面的实验,结果表明,所提出的EGFE-WANM SR方法在客观评估和主观视觉比较方面都优于许多最新方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号