首页> 外文期刊>Neurocomputing >High-fidelity image deconvolution for low-dose cerebral perfusion CT imaging via low-rank and total variation regularizations
【24h】

High-fidelity image deconvolution for low-dose cerebral perfusion CT imaging via low-rank and total variation regularizations

机译:通过低秩和总变异正则化实现低剂量脑灌注CT成像的高保真图像反卷积

获取原文
获取原文并翻译 | 示例

摘要

Cerebral perfusion computed tomography (PCT) provides a comprehensive and accurate noninvasive survey of the site of arterial occlusion by producing hemodynamic parameter maps (HPMs) in a qualitative and quantitative way. An HPM can be generally yielded through singular value decomposition (SVD)based deconvolution approaches. However, due to their sequential scan protocol of PCT imaging, SVD-based deconvolution approaches are usually sensitive to noise, especially in low-dose cases. To obtain a high-fidelity HPM for low-dose PCT, in this study, we propose a high-fidelity image-domain deconvolution method that utilizes low-rank and total-variation (LR-TV) constraints. Specifically, the LR-TV constraints model both the spatio-temporal structure information and the low-rank characteristics present in the PCT data to mitigate the oscillations from noise. Subsequently, a modified Split-Bregman method is introduced to optimize the associated objective function. Both digital phantom and clinical patient data experiments are conducted to validate and evaluate the performance of the proposed LR-TV method. The experimental results demonstrate that the proposed LR-TV method can outperform the existing deconvolution approaches in high-fidelity HPM estimation. (C) 2018 Elsevier B.V. All rights reserved.
机译:脑灌注计算机断层扫描(PCT)通过以定性和定量的方式生成血流动力学参数图(HPM),提供了对动脉闭塞部位的全面而准确的无创调查。通常可以通过基于奇异值分解(SVD)的反卷积方法来生成HPM。但是,由于其基于PCT成像的顺序扫描协议,基于SVD的反卷积方法通常对噪声敏感,尤其是在低剂量情况下。为了获得用于低剂量PCT的高保真HPM,在本研究中,我们提出了一种利用低秩和总变异(LR-TV)约束的高保真图像域反卷积方法。具体而言,LR-TV约束同时对时空结构信息和PCT数据中存在的低秩特征进行建模,以减轻来自噪声的振荡。随后,引入了改进的Split-Bregman方法来优化关联的目标函数。进行了数字幻像和临床患者数据实验,以验证和评估所提出的LR-TV方法的性能。实验结果表明,在高保真HPM估计中,所提出的LR-TV方法可以胜过现有的反卷积方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第5期|175-187|共13页
  • 作者单位

    Guangzhou Univ Tradit Chinese Med, Affiliated Hosp 1, Guangzhou 510405, Guangdong, Peoples R China;

    Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China;

    Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China;

    Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China;

    Guangzhou Univ Tradit Chinese Med, Affiliated Hosp 1, Guangzhou 510405, Guangdong, Peoples R China;

    Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China;

    Guangzhou Univ Tradit Chinese Med, Affiliated Hosp 1, Guangzhou 510405, Guangdong, Peoples R China;

    Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cerebral perfusion CT; Low-dose; Low-rank; Total variation; Regularization;

    机译:脑灌注CT;低剂量;低秩;总变异;正则化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号