首页> 外文期刊>Neurocomputing >Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations
【24h】

Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations

机译:通过低秩和总变化正则化进行低剂量脑灌注计算机断层扫描图像恢复

获取原文
获取原文并翻译 | 示例

摘要

Cerebral perfusion X-ray computed tomography (PCT) is an important functional imaging modality for evaluating cerebrovascular diseases and has been widely used in clinics over the past decades. However, due to the protocol of PCT imaging with repeated dynamic sequential scans, the associative radiation dose unavoidably increases as compared with that used in conventional CT examinations. Minimizing the radiation exposure in PCT examination is a major task in the CT field. In this paper, considering the rich similarity redundancy information among enhanced sequential PCT images, we propose a low-dose PCT image restoration model by incorporating the low-rank and sparse matrix characteristic of sequential PCT images. Specifically, the sequential PCT images were first stacked into a matrix (i.e., low-rank matrix), and then a non-convex spectral norm/regularization and a spatio-temporal total variation norm/regularization were then built on the low-rank matrix to describe the low rank and sparsity of the sequential PCT images, respectively. Subsequently, an improved split Bregman method was adopted to minimize the associative objective function with a reasonable convergence rate. Both qualitative and quantitative studies were conducted using a digital phantom and clinical cerebral PCT datasets to evaluate the present method. Experimental results show that the presented method can achieve images with several noticeable advantages over the existing methods in terms of noise reduction and universal quality index. More importantly, the present method can produce more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps. (C) 2016 Elsevier B.V. All rights reserved.
机译:脑灌注X射线计算机断层扫描(PCT)是评估脑血管疾病的重要功能成像方式,在过去的几十年中已广泛用于临床。但是,由于具有重复动态顺序扫描的PCT成像方案,与常规CT检查相比,联合放射剂量不可避免地增加了。在PCT检查中,使PCT检查中的辐射暴露最小化是一项主要任务。在本文中,考虑到增强的顺序PCT图像之间的丰富相似性冗余信息,我们通过结合顺序PCT图像的低秩和稀疏矩阵特征,提出了一种低剂量PCT图像恢复模型。具体来说,先将顺序的PCT图像堆叠到一个矩阵(即低秩矩阵)中,然后在该低秩矩阵上建立一个非凸谱范数/正则化和一个时空总变化范数/正则化分别描述顺序PCT图像的低等级和稀疏性。随后,采用改进的分裂Bregman方法,以合理的收敛速度使关联目标函数最小化。使用数字体模和临床脑PCT数据集进行了定性和定量研究,以评估本方法。实验结果表明,相对于现有方法,该方法在降噪和通用质量指标上均具有明显优势。更重要的是,本方法可以产生更准确的动力学增强细节和诊断性血液动力学参数图。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第12期|143-160|共18页
  • 作者单位

    Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China|Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China;

    Guangzhou Univ Tradit Chinese Med, Affiliated Hosp q, Guangzhou 510405, Guangdong, Peoples R China;

    Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China|Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Guangdong, Peoples R China;

    Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China|Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Guangdong, Peoples R China;

    Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China|Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Guangdong, Peoples R China;

    Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China;

    SUNY Stony Brook, Dept Radiol, Stony Brook, NY 11794 USA;

    Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China|Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Guangdong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cerebral perfusion CT; Low-dose; Low-rank; Total variation; Regularization;

    机译:脑灌注CT;低剂量;低秩;总变异;正则化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号