首页> 外文期刊>Neurocomputing >Robust subspace clustering via symmetry constrained latent low rank representation with converted nuclear norm
【24h】

Robust subspace clustering via symmetry constrained latent low rank representation with converted nuclear norm

机译:通过对称约束的潜在低秩表示与转换核范数的鲁棒子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Subspace clustering, which is devoted to classifying data samples derived from a union of linear subspaces, has been widely applied to various fields such as pattern recognition, artificial intelligence and computer vision. In this paper, we propose a symmetry constrained latent low rank representation with converted nuclear norm (SLLRRC) algorithm for robust subspace clustering, which extends the original latent low rank representation (LLRR) algorithm by introducing a kind of converted nuclear norm and integrating strategy of the symmetric constraint. SLLRRC both enhances the sparsity of the coefficient matrix and guarantees weight consistency for each pair of data samples when seeking the low rank representation. The symmetric coefficient matrix that will no longer be overly dense is acquired by the inexact augmented Lagrange multipliers (IALM) method. With further exploiting the angular information of the principal directions of that, the sparse affinity matrix for spectral clustering is identified. Extensive experimental results on face clustering and motion segmentation datasets confirm the availability and robustness of the proposed algorithm, and it is highly competitive compared to the state-of-the-art subspace clustering algorithms. (C) 2019 Elsevier B.V. All rights reserved.
机译:子空间聚类致力于对从线性子空间的并集得出的数据样本进行分类,已广泛应用于模式识别,人工智能和计算机视觉等各个领域。本文针对鲁棒子空间聚类提出了一种对称约束的带有转换核范数的潜在低秩表示(SLLRRC)算法,通过引入一种转换核范数和融合策略来扩展了原始的潜在低秩表示(LLRR)算法。对称约束。当寻求低秩表示时,SLLRRC既增强了系数矩阵的稀疏性,又保证了每对数据样本的权重一致性。通过不精确的增强拉格朗日乘数(IALM)方法获取不再过密的对称系数矩阵。通过进一步利用其主要方向的角度信息,识别了用于谱聚类的稀疏亲和矩阵。在人脸聚类和运动分割数据集上的大量实验结果证实了该算法的可用性和鲁棒性,并且与最新的子空间聚类算法相比具有很高的竞争力。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号