首页> 外文OA文献 >Constrained Low-Rank Representation for Robust Subspace Clustering
【2h】

Constrained Low-Rank Representation for Robust Subspace Clustering

机译:鲁棒子空间聚类的约束低秩表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Subspace clustering aims to partition the data pointsuddrawn from a union of subspaces according to their underly-uding subspaces. For accurate semisupervised subspace clustering,all data that have a must-link constraint or the same label should be grouped into the same underlying subspace. However, this is not guaranteed in existing approaches. Moreover, these approaches require additional parameters for incorporating supervision information. In this paper, we propose a constrained low-rank representation (CLRR) for robust semisupervised sub-space clustering, based on a novel constraint matrix constructedudin this paper. While seeking the low-rank representation of data, CLRR explicitly incorporates supervision information as hard constraints for enhancing the discriminating power of optimal representation. This strategy can be further extended to other state-of-the-art methods, such as sparse subspace clustering. We theoretically prove that the optimal representation matrix has both a block-diagonal structure with clean data and a semisu-pervised grouping effect with noisy data. We have also developed an efficient optimization algorithm based on alternating the direction method of multipliers for CLRR. Our experimental results have demonstrated that CLRR outperforms existing methods.
机译:子空间聚类旨在根据子空间的潜在子空间对从子空间并集提取的数据点进行分区。为了进行精确的半监督子空间聚类,应将具有必须链接约束或相同标签的所有数据分组到同一基础子空间中。但是,在现有方法中不能保证这一点。此外,这些方法需要附加参数来合并监督信息。本文基于本文构造的新型约束矩阵,提出了一种鲁棒的半监督子空间聚类的约束低秩表示(CLRR)。在寻求数据的低级表示时,CLRR明确将监管信息纳入硬约束,以增强最佳表示的区分能力。该策略可以进一步扩展到其他最新技术,例如稀疏子空间聚类。我们从理论上证明,最优表示矩阵既具有干净数据的块对角结构,又具有带有噪声数据的半监督分组效果。我们还开发了一种基于交替乘法CLRR的方向方法的高效优化算法。我们的实验结果表明,CLRR优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号