首页> 外文期刊>Journal of visual communication & image representation >Towards robust subspace recovery via sparsity-constrained latent low-rank representation
【24h】

Towards robust subspace recovery via sparsity-constrained latent low-rank representation

机译:通过稀疏约束的潜在低秩表示实现鲁棒的子空间恢复

获取原文
获取原文并翻译 | 示例

摘要

Robust recovery of subspace structures from noisy data has received much attention in visual analysis recently. To achieve this goal, previous works have developed a number of low-rank based methods, among of which Low-Rank Representation (LRR) is a typical one. As a refined variant, Latent LRR constructs the dictionary using both observed and hidden data to relieve the insufficient sampling problem. However, they fail to consider the observation that each data point can be represented by only a small subset of atoms in a dictionary. Motivated by this, we present the Sparse Latent Low-rank representation (SLL) method, which explicitly imposes the sparsity constraint on Latent LRR to encourage a sparse representation. In this way, each data point can be represented by only selecting a few points from the same subspace. Its objective function is solved by the linearized Augmented Lagrangian Multiplier method. Favorable experimental results on subspace clustering, salient feature extraction and outlier detection have verified promising performances of our method. (C) 2015 Elsevier Inc. All rights reserved.
机译:从噪声数据中可靠地恢复子空间结构在视觉分析中受到了广泛的关注。为了实现这一目标,以前的工作开发了许多基于低等级的方法,其中典型的是低等级表示(LRR)。作为改进的变体,潜在LRR使用观察到的数据和隐藏数据来构造字典,以缓解采样不足的问题。但是,他们没有考虑到每个数据点只能由字典中一小部分原子表示的观察。为此,我们提出了稀疏的潜在低秩表示(SLL)方法,该方法明确地将稀疏性约束强加于潜在的LRR,以鼓励稀疏表示。这样,可以通过仅从同一子空间中选择几个点来表示每个数据点。它的目标函数通过线性化的拉格朗日乘数法求解。在子空间聚类,显着特征提取和离群值检测方面的良好实验结果证明了我们方法的良好前景。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号