首页> 外文期刊>Neurocomputing >Hyperspectral image target detection via integrated background suppression with adaptive weight selection
【24h】

Hyperspectral image target detection via integrated background suppression with adaptive weight selection

机译:通过集成背景抑制和自适应权重选择的高光谱图像目标检测

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral image (HSI) target detection is an important technology, but is faced with the critical challenge of complex background interference. The background clutter is difficult to effectively suppress, which often results in a relatively poor detection performance being obtained. To address this problem, a new target detection method via integrated background suppression with adaptive weight selection (TDIBS_AWS) is proposed in this paper. TDIBS_AWS has the following capabilities: (1) it explores the great difference between the target and background with two different background suppression strategies: principal component analysis (PCA) and spectral unmixing (SU); (2) it applies adaptive weight selection based on the particle swarm optimization (PSO) algorithm to optimize the weighting coefficient of the integrated background suppression model; and (3) it takes full advantage of support vector data description (SVDD) to improve the target detection performance for the rest of the information, after the background and noise have been removed. Experiments were undertaken using synthetic data and a real HSI, and it was found that TDIBS_AWS generally shows a better detection performance than the other state-of-the-art target detection methods. (c) 2018 Elsevier B.V. All rights reserved.
机译:高光谱图像(HSI)目标检测是一项重要技术,但面临复杂背景干扰的严峻挑战。背景杂波难以有效地抑制,这常常导致获得相对较差的检测性能。为了解决这个问题,本文提出了一种新的目标检测方法,该方法通过集成背景抑制和自适应权重选择(TDIBS_AWS)。 TDIBS_AWS具有以下功能:(1)使用两种不同的背景抑制策略(主成分分析(PCA)和光谱分解(SU))探索目标与背景之间的巨大差异; (2)应用基于粒子群优化(PSO)算法的自适应权重选择来优化背景抑制模型的权重系数; (3)在去除背景和噪声之后,充分利用支持向量数据描述(SVDD)来提高其余信息的目标检测性能。使用合成数据和真实的HSI进行了实验,发现TDIBS_AWS通常显示出比其他最新目标检测方法更好的检测性能。 (c)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第13期|59-67|共9页
  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号