首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >An Automatic Approach to Adaptive Local Background Estimation and Suppression in Hyperspectral Target Detection
【24h】

An Automatic Approach to Adaptive Local Background Estimation and Suppression in Hyperspectral Target Detection

机译:高光谱目标检测中自适应局部背景估计和抑制的自动方法

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with subspace-based target detection in hyperspectral images. Specifically, it focuses on a general detection scheme where, first, background is suppressed through orthogonal-subspace projection and then target detection is accomplished. An adequate estimation of the background subspace is essential to a successful outcome. The background subspace has been typically estimated globally. However, global approaches may be ineffective for small-target-detection applications since they tend to overestimate the background interference affecting a given target. This may result in a low target residual energy after background suppression that is detrimental to detection performance. In this paper, we propose a novel and fully automatic algorithm for local background-subspace estimation (LBSE). Local background has typically a lower inherent complexity than that of global background. By estimating the background subspace over a local neighborhood of the test pixel, the resulting background-subspace dimension is expected to be low, thus resulting in a higher target residual energy after suppression which benefits the detection performance. Specifically, the proposed LBSE acts on a per-pixel basis, thus adaptively tailoring the estimated basis to the local complexity of background. Both simulated and real hyperspectral data are employed to investigate the detection-performance improvements offered by LBSE with respect to both global and local methodologies previously presented.
机译:本文涉及高光谱图像中基于子空间的目标检测。具体地,其关注于一般的检测方案,其中,首先,通过正交子空间投影来抑制背景,然后完成目标检测。对背景子空间的充分估计对于成功取得结果至关重要。背景子空间通常是全局估计的。但是,全局方法对于小目标检测应用可能无效,因为它们会高估影响给定目标的背景干扰。在背景抑制之后,这可能导致较低的目标剩余能量,这对检测性能有害。在本文中,我们提出了一种新颖的,全自动的局部背景子空间估计算法(LBSE)。本地背景通常比全局背景具有较低的固有复杂性。通过估计测试像素的局部邻域上的背景子空间,可以预期得到的背景子空间维数较小,从而在抑制之后会导致较高的目标剩余能量,从而有利于检测性能。具体地,所提出的LBSE基于每个像素起作用,从而自适应地将估计的基础调整为背景的局部复杂性。模拟和真实的高光谱数据均用于调查LBSE在先前介绍的全局和局部方法方面提供的检测性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号