首页> 外文期刊>Neurocomputing >A nonlinear and noise-tolerant ZNN model solving for time-varying linear matrix equation
【24h】

A nonlinear and noise-tolerant ZNN model solving for time-varying linear matrix equation

机译:时变线性矩阵方程的非线性容忍ZNN模型求解

获取原文
获取原文并翻译 | 示例

摘要

The Zhang neural network (ZNN) has attracted a great deal of interest from a large number of researchers because of its significant advantage in solving the various time-varying problems by the monotonously increasing odd activation functions. Many related models have been proposed for time-varying matrix solutions, however, provided that the noise is zero or the preprocessing of de-noising is conducted. Therefore, many of the models previously proposed are not suitable for real-world situations. In this study, a nonlinear and noise-tolerant ZNN model, named NNT-ZNN, is proposed and discussed based on the matrix-valued error function. Theoretically, we prove that the proposed NNT-ZNN model can be globally converged to the theory solution of the considered time-varying equation, regardless of any activation function being applied. In addition, we prove that the resultant NNT-ZNN model has the superior convergence performance beside the existing ZNN models, even when noise is not zero. After that, the simulative results of the resultant NNT-ZNN model are provided by using three illustrative examples to thoroughly validate the correctness of the theoretical analysis. Moreover, the simulation comparison between the proposed NNT-ZNN model and the existing ZNN-1 model is conducted, which further show that availability and excellence of the resultant NNT-ZNN model, and robustness to noise. (C) 2018 Elsevier B.V. All rights reserved.
机译:张神经网络(ZNN)由于其通过单调增加奇数激活函数来解决各种时变问题的显着优势而吸引了众多研究人员的关注。已经提出了许多有关时变矩阵解决方案的相关模型,但是前提是噪声为零或进行了去噪预处理。因此,先前提出的许多模型都不适合实际情况。在这项研究中,提出并讨论了基于矩阵值误差函数的非线性且耐噪声的ZNN模型,即NNT-ZNN。从理论上讲,我们证明了所提出的NNT-ZNN模型可以全局收敛到所考虑的时变方程的理论解,而与应用任何激活函数无关。此外,我们证明了即使在噪声不为零的情况下,所得的NNT-ZNN模型也比现有的ZNN模型具有更好的收敛性能。此后,通过使用三个示例性例子来提供所得NNT-ZNN模型的仿真结果,以彻底验证理论分析的正确性。此外,在建议的NNT-ZNN模型和现有的ZNN-1模型之间进行了仿真比较,这进一步表明了所得NNT-ZNN模型的可用性和优越性以及对噪声的鲁棒性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号