首页> 外文期刊>Neurocomputing >Design and analysis of three nonlinearly activated ZNN models for solving time-varying linear matrix inequalities in finite time
【24h】

Design and analysis of three nonlinearly activated ZNN models for solving time-varying linear matrix inequalities in finite time

机译:三种非线性激活ZNN模型的设计与分析,用于求解有限时间的时变线性矩阵不等式

获取原文
获取原文并翻译 | 示例

摘要

To obtain the superiority property of solving time-varying linear matrix inequalities (LMIs), three novel finite-time convergence zeroing neural network (FTCZNN) models are designed and analyzed in this paper. First, to make the Matlab toolbox calculation processing more conveniently, the matrix vectorization technique is used to transform matrix-valued FTCZNN models into vector-valued FTCZNN models. Then, considering the importance of nonlinear activation functions on the conventional zeroing neural network (ZNN), the sign-bi-power activation function (AF), the improved sign-bi-power AF and the tunable signbi-power AF are explored to establish the FTCZNN models. Theoretical analysis shows that the FTCZNN models not only can accelerate the convergence speed, but also can achieve finite-time convergence. Computer numerical results ulteriorly confirm the effectiveness and advantages of the FTCZNN models for finding the solution set of time-varying LMIs. (C) 2020 Elsevier B.V. All rights reserved.
机译:为了获得求解时变线性矩阵不等式(LMI)的优势性能,在本文中设计并分析了三种新的有限时间收敛归零神经网络(FTCZNN)模型。首先,为了使MATLAB工具箱计算处理更方便,矩阵矢量化技术用于将矩阵值FTCZNN模型转换为向量值FTCZNN模型。然后,考虑到非线性激活功能对传统归零神经网络(ZnN)的重要性,探讨了符号 - 双电源激活功能(AF),改进的符号 - Bi-Power AF和可调符号 - 电源AF来建立FTCZNN模型。理论分析表明,FTCZNN型号不仅可以加速收敛速度,还可以实现有限时间的收敛。计算机数值结果概括地证明了FTCZNN模型的效力和优点,用于查找时变量的解决方案集。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号