首页> 外文期刊>Neural processing letters >A Non-linear and Noise-Tolerant ZNN Model and Its Application to Static and Time-Varying Matrix Square Root Finding
【24h】

A Non-linear and Noise-Tolerant ZNN Model and Its Application to Static and Time-Varying Matrix Square Root Finding

机译:一种非线性和噪声容忍ZnN模型及其在静态和时变矩阵方根发现的应用

获取原文
获取原文并翻译 | 示例

摘要

Based on the indefinite error-monitoring function, we propose a novel Zhang neural network (ZNN) model called NNT-ZNN with two properties of nonlinear and noise-tolerant for the time-varying and static matrix square root finding in this paper. Compared to the existing models associated with the square matrix root finding, the NNT-ZNN model proposed in this study fully takes error caused by possible noise on ZNN hardware implementation into account. Under the background that the large model-implementation error, the model still has the ability to converge to the theoretical square root of the given matrix with simulative results illustrated in the paper. For the purpose of comparison, the ZNN model proposed by Zhang et al. is also introduced. Beyond that, the corresponding convergence results of the NNT-ZNN model corresponding to various activation functions, are also shown via time-varying and static positive definite matrix. In the end, the experiments are simulated with MATLAB, which further verifies the availability, effectiveness of the proposed NNT-ZNN model, and robustness against unknown noise.
机译:基于无限误差监测功能,我们提出了一种名为NNT-ZnN的新型张神经网络(ZnN)模型,其两个特性为本文的时变静态矩阵广场根的两个性能。与与方形矩阵根发现相关的现有模型相比,本研究中提出的NNT-ZNN模型完全取决于ZNN硬件实现的可能噪声引起的错误。在大型型号实现误差的背景下,该模型仍然能够与给定矩阵的理论平方根与纸张中示出的模拟结果收敛到给定矩阵的理论平方根。为了比较,张等人提出的ZnN模型。还介绍。除此之外,还通过时变且静态的正向矩阵示出了对应于各种激活功能的NNT-ZNN模型的相应收敛结果。最后,使用MATLAB模拟实验,该MATLAB进一步验证所提出的NNT-ZNN模型的可用性,有效性,以及针对未知噪声的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号