首页> 外文期刊>Neurocomputing >Robust boundary iterative learning control for a class of nonlinear hyperbolic systems with unmatched uncertainties and disturbance
【24h】

Robust boundary iterative learning control for a class of nonlinear hyperbolic systems with unmatched uncertainties and disturbance

机译:一类具有无穷不确定性和扰动的非线性双曲系统的鲁棒边界迭代学习控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the robust boundary iterative learning control for the output tracking and disturbance attenuation of the 2 x 2 nonlinear hyperbolic system is addressed. Since the measurement limitation, the control and measurement are implemented at the same boundary of the system and the disturbance is not necessary to be estimated, which makes the iterative learning control be easy in implementation and low in measurement cost. By using the characteristic method, the robust convergence with respect to iteration-varying uncertainties arising from initial states shift, external disturbances, model plants uncertainties and disturbed reference trajectories is analyzed without any model reduction, rigorously. It is shown that the robust convergence bound is continuously dependent on the bounds of the iteration varying uncertainties. Furthermore, to implement the proposed iterative learning control, the actuator dynamic is considered, also. Finally, with the actuator dynamic, two examples are given to demonstrate the effectiveness of the proposed iterative learning control strategy for the 2 x 2 nonlinear hyperbolic system. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文针对2 x 2非线性双曲系统的输出跟踪和扰动衰减提出了鲁棒边界迭代学习控制。由于测量的局限性,控制和测量都在系统的同一边界上进行,并且不需要估计干扰,这使得迭代学习控制易于实现且测量成本较低。通过使用特征方法,可以在不进行任何模型简化的情况下,对由初始状态转移,外部干扰,模型工厂的不确定性和受干扰的参考轨迹引起的迭代不确定性的鲁棒收敛进行分析。结果表明,鲁棒收敛边界连续地取决于迭代变化不确定性的边界。此外,为了实现所提出的迭代学习控制,还考虑了执行器动态特性。最后,借助执行器的动态特性,给出了两个例子来说明所提出的2 x 2非线性双曲系统迭代学习控制策略的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第10期|332-345|共14页
  • 作者

    He Chao; Li Junmin;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号