首页> 外文期刊>Neurocomputing >Regularized robust Broad Learning System for uncertain data modeling
【24h】

Regularized robust Broad Learning System for uncertain data modeling

机译:用于不确定数据建模的正则化鲁棒广泛学习系统

获取原文
获取原文并翻译 | 示例

摘要

Broad Learning System (BLS) has achieved outstanding performance in classification and regression problems. Specifically, the accuracy and efficiency can be balanced well by BLS. However, the presence of outliers in data may destroy the stability and generality of standard BLS. In this paper, we propose the robust version of BLS (RBLS) to treat the data modeling with outliers. By assuming the regression residual and output weights follow their respective distributions, the objective function for RBLS is derived and the output weights for robust modeling can be determined by maximum a posterior estimation. Then the robustness of RBLS can be enhanced further by integrating the regularization theory. The Augmented Lagrange Multiplier method is utilized to optimize the novel models efficiently, and a solid theoretical proof is given to guarantee that the proposed RBLS is more robust than the standard BLS. Extensive experiments on function approximation and real-world regression are carried out to demonstrate that our proposed RBLS model can achieve a better modeling performance in uncertain data environment than the standard BLS and other regression algorithms. (C) 2018 Elsevier B.V. All rights reserved.
机译:广泛学习系统(BLS)在分类和回归问题上表现出色。具体而言,BLS可以很好地平衡精度和效率。但是,数据中存在异常值可能会破坏标准BLS的稳定性和普遍性。在本文中,我们提出了健壮的BLS(RBLS)版本,用于处理具有异常值的数据建模。通过假设回归残差和输出权重遵循它们各自的分布,可以导出RBLS的目标函数,并且可以通过最大程度地进行后验估计来确定用于鲁棒建模的输出权重。然后,通过整合正则化理论,可以进一步增强RBLS的鲁棒性。利用增强拉格朗日乘数法对新模型进行了有效的优化,并给出了可靠的理论证明,以确保所提出的RBLS比标准BLS更健壮。进行了大量的函数逼近和真实世界回归实验,证明了我们提出的RBLS模型在不确定的数据环境中可以比标准的BLS和其他回归算法实现更好的建模性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第17期|58-69|共12页
  • 作者

    Jin Jun-Wei; Chen C. L. Philip;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号