首页> 外文期刊>Neurocomputing >Hough transform network: a class of networks for identifying parametric structures
【24h】

Hough transform network: a class of networks for identifying parametric structures

机译:霍夫变换网络:一类用于识别参数结构的网络

获取原文
获取原文并翻译 | 示例

摘要

A class of structure seeking neural networks is presented which are capable of learning parametric structures under unsupervised mode. The functionality of the class of networks is analogous to that of the classical Hough transform, one of the most widely used algorithms in visual pattern recognition. However, the present class of networks provide a much more efficient representation with a highly reduced storage space, capability of quantifying the impreciseness in the input, and ability to handle sparse data sets. The effectiveness of the network and its newly defined learning rules is demonstrated on different data sets under noisy conditions.
机译:提出了一类结构搜索神经网络,其能够在无监督模式下学习参数结构。网络类别的功能类似于经典的霍夫变换,后者是视觉模式识别中使用最广泛的算法之一。但是,当前类别的网络提供了一种效率更高的表示形式,并具有高度减少的存储空间,量化输入中不精确性的能力以及处理稀疏数据集的能力。在嘈杂的条件下,在不同的数据集上证明了网络及其新定义的学习规则的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号