首页> 外文期刊>Neurocomputing >Unsupervised learning of synaptic delays based on learning automata in an RBF-like network of spiking neurons for data clustering
【24h】

Unsupervised learning of synaptic delays based on learning automata in an RBF-like network of spiking neurons for data clustering

机译:在基于RBF的尖峰神经元网络中基于学习自动机的突触延迟无监督学习,用于数据聚类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new delay shift approach for learning in an RBF-like neural network structure of spiking neurons is introduced. The synaptic connections between the input and the RBF neurons are single delayed connections and the delays are adapted during an unsupervised learning process. Each synaptic connection in this network is modeled by a learning automaton. The action of the automaton associated with each connection is considered as the delay of the corresponding synaptic connection. It is shown through simulations that the clustering precision of the proposed network is considerably higher than that of the existing similar neural networks.
机译:本文介绍了一种新的延迟移位方法,用于在尖峰神经元的类似于RBF的神经网络结构中进行学习。输入和RBF神经元之间的突触连接是单个延迟连接,并且在无监督的学习过程中会调整延迟。该网络中的每个突触连接都由学习自动机建模。与每个连接关联的自动机的动作被视为相应突触连接的延迟。通过仿真表明,所提出的网络的聚类精度明显高于现有的类似神经网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号