首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Role of synaptic variability in resistive memory-based spiking neural networks with unsupervised learning
【24h】

Role of synaptic variability in resistive memory-based spiking neural networks with unsupervised learning

机译:突触变异在基于电阻存储器的尖刺神经网络与无监督学习的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Resistive switching memories (RRAMs) have attracted wide interest as adaptive synaptic elements in artificial bio-inspired spiking neural networks (SNNs). These devices suffer from high cycle-to-cycle and cell-to-cell conductance variability, which is usually considered as a big challenge. However, biological synapses are noisy devices and the brain seems in some situations to benefit from the noise. It has been predicted that RRAM-based SNNs are intrinsically robust to synaptic variability. Here, we investigate this robustness based on extensive characterization data: we analyze the role of noise during unsupervised learning by spike-timing dependent plasticity (STDP) for detection in dynamic input data and classification of static input data. Extensive characterizations of multi-kilobits HfO2-based oxide-based RAM (OxRAM) arrays under different programming conditions are presented. We identify the trade-offs between programming conditions, power consumption, conductance variability and endurance features. Finally, the experimental results are used to perform system-level simulations fully calibrated on the experimental data. The results demonstrate that, similarly to biology, SNNs are not only robust to noise but a certain amount of noise can even improve the network performance. OxRAM conductance variability increases the range of synaptic values explored during the learning process. Moreover, the reduction of constraints on the OxRAM conductance variability allows the system to operate at low power programming conditions.
机译:电阻切换存储器(RRAM)吸引了广泛的兴趣作为人工生物启发尖峰神经网络(SNNS)的自适应突触元素。这些装置遭受高循环到循环和细胞到细胞的电导变异性,通常被认为是一个大挑战。然而,生物突触是嘈杂的设备,大脑似乎在某些情况下从噪音中受益。已经预测,基于RRAM的SNN是对突触变异性的本质上稳健。在这里,我们根据广泛的表征数据调查这种稳健性:我们通过Spike-时序依赖性可塑性(STDP)来分析噪声期间噪声的作用,用于检测动态输入数据和静态输入数据的分类。呈现了在不同编程条件下的基于基于基于氧化物的基于氧化物的基于氧化物的基于氧化物的RAM(OXRAM)阵列的广泛表征。我们确定编程条件,功耗,电导变异性和耐久性功能之间的权衡。最后,实验结果用于在实验数据上完全校准系统级模拟。结果表明,与生物学类似,SNNS不仅对噪声鲁棒而且甚至可以提高网络性能。 oxRAM电导可变性增加了学习过程中探索的突触值的范围。此外,对氧气电导变化性的约束的减小允许系统在低功率编程条件下操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号