首页> 外文期刊>Neurocomputing >The design of neuro-fuzzy networks using particle swarm optimization and recursive singular value decomposition
【24h】

The design of neuro-fuzzy networks using particle swarm optimization and recursive singular value decomposition

机译:基于粒子群优化和递归奇异值分解的神经模糊网络设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a neuro-fuzzy network with novel hybrid learning algorithm is proposed. The novel hybrid learning algorithm is based on the fuzzy entropy clustering (FEC), the modified particle swarm optimization (MPSO), and the recursive singular value decomposition (RSVD). The FEC is used to partition the input data for performing structure learning. Then, we adopt the MPSO to adjust the antecedent parameters of fuzzy rules. Two strategies in the MPSO, called the effective local approximation method (ELAM) and the multi-elites strategy (MES), are proposed to improve the performance of the traditional PSO. Moreover, we will apply RSVD to obtain the optimal consequent parameters of fuzzy rules. The proposed hybrid learning algorithm achieves superior performance in learning speed and learning accuracy than those of some traditional genetic methods.
机译:本文提出了一种具有新型混合学习算法的神经模糊网络。新颖的混合学习算法基于模糊熵聚类(FEC),改进的粒子群优化(MPSO)和递归奇异值分解(RSVD)。 FEC用于对输入数据进行分区以执行结构学习。然后,我们采用MPSO调整模糊规则的先验参数。为了提高传统PSO的性能,提出了MPSO中的两种策略,即有效局部逼近法(ELAM)和多精英策略(MES)。此外,我们将应用RSVD来获得模糊规则的最优后续参数。所提出的混合学习算法在学习速度和学习准确性上均优于某些传统遗传方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号