首页> 外文期刊>Fuzzy sets and systems >An Efficient Immune-based Symbiotic Particle Swarm Optimization Learning Algorithm For Tsk-type Neuro-fuzzy Networks Design
【24h】

An Efficient Immune-based Symbiotic Particle Swarm Optimization Learning Algorithm For Tsk-type Neuro-fuzzy Networks Design

机译:Tsk型神经模糊网络设计的一种高效的基于免疫的共生粒子群优化学习算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new learning algorithm that can be used to design TSK-type neuro-fuzzy networks. Though there has been a great deal of interest in the use of immune algorithms (IAs) for computer science and engineering, in terms of fundamental methodologies, they are not dramatically different from other algorithms. In order to enhance the IA performance, we propose the immune-based symbiotic particle swarm optimization (ISPSO) for use in TSK-type neuro-fuzzy networks for solving the prediction and skin color detection problems. The proposed ISPSO embeds the symbiotic evolution scheme in an IA and utilizes particle swarm optimization (PSO) to improve the mutation mechanism. In order to avoid trapping in a local optimal solution and to ensure the search capability of a near global optimal solution, mutation plays an important role. Therefore, we employed the advantages of PSO to improve the mutation mechanism and used a method that introduces chaotic mapping with certainty, ergodicity and the stochastic property into PSO to improve global convergence. Unlike the IA that uses each individual in a population as a full solution to a problem, symbiotic evolution assumes that each individual in a population represents only a partial solution to a problem. Complex solutions combine several individuals in the population.
机译:在本文中,我们提出了一种新的学习算法,可用于设计TSK型神经模糊网络。尽管在计算机科学和工程学中对免疫算法(IA)的使用引起了极大兴趣,但就基本方法论而言,它们与其他算法并没有太大的不同。为了提高IA的性能,我们提出了基于免疫的共生粒子群优化(ISPSO),用于TSK型神经模糊网络,以解决预测和肤色检测问题。提出的ISPSO将共生进化方案嵌入IA中,并利用粒子群优化(PSO)来改善突变机制。为了避免陷入局部最优解并确保接近全局最优解的搜索能力,变异起着重要的作用。因此,我们利用PSO的优势来改善突变机制,并采用了将确定性,遍历性和随机性引入混沌映射的方法来提高PSO的全局收敛性。与IA使用群体中的每个个体作为问题的完整解决方案的IA不同,共生进化假设群体中的每个个体仅代表问题的部分解决方案。复杂的解决方案将人口中的几个人结合在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号