首页> 外文期刊>Neurocomputing >Data mining neural spike trains for the identification of behavioural triggers using evolutionary algorithms
【24h】

Data mining neural spike trains for the identification of behavioural triggers using evolutionary algorithms

机译:数据挖掘神经穗序列用于使用进化算法识别行为触发

获取原文
获取原文并翻译 | 示例

摘要

We analysed spike trains from the descending contralateral movement detector (DCMD) neuron of locusts. The locusts either performed jumps or did not jump in response to visual looming stimuli. An evolutionary algorithm (EA) was employed to sort spike trains into the correct behavioural categories by optimising threshold parameters, so jump behaviour occurred if the spike-train data exceeded the threshold parameters from the EA. A candidate behavioural trigger appeared to be prolonged high-frequency spikes at a relatively early stage in the approach of the stimulus. This technique provides a useful precursor to a full biological analysis of the escape jump mechanism.
机译:我们分析了来自蝗虫的对侧降落运动检测器(DCMD)神经元的穗状花序。蝗虫响应视觉迫在眉睫的刺激而执行跳跃或不跳跃。通过优化阈值参数,采用了一种进化算法(EA)将峰值序列分类为正确的行为类别,因此,如果峰值序列数据超出EA的阈值参数,则会发生跳跃行为。候选的行为触发因素似乎是在刺激方法的相对早期阶段出现的高频尖峰延长。该技术为逃逸跳跃机理的完整生物学分析提供了有用的先驱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号