首页> 外文期刊>Engineering Optimization >Data-mining assisted structural optimization using the evolutionary algorithm and neural network
【24h】

Data-mining assisted structural optimization using the evolutionary algorithm and neural network

机译:使用进化算法和神经网络的数据挖掘辅助结构优化

获取原文
获取原文并翻译 | 示例

摘要

The use of evolutionary algorithms for global optimization has increased rapidly during the past several years. But evolutionary computations have a common drawback: they need a huge number of function evaluations. This makes them inadequate for structural optimization. To overcome this difficulty, the authors propose a method that integrates the evolutionary algorithm with data mining and approximate analysis to find the optimal solution in structural optimization. The approximate analysis is used to replace exact finite element analyses and the data mining is employed to identify feasible solutions. These combined efforts can reduce the computational time and search the feasible region intensively. As a result, the efficiency and quality of structural optimization using evolutionary algorithms will be increased. Some test problems show that the proposed method not only finds the global solution but is also less computationally demanding.
机译:在过去的几年中,使用进化算法进行全局优化的应用已迅速增加。但是进化计算有一个共同的缺点:它们需要大量的函数求值。这使得它们不足以进行结构优化。为了克服这一困难,作者提出了一种将进化算法与数据挖掘和近似分析相集成的方法,以找到结构优化中的最佳解决方案。近似分析用于代替精确的有限元分析,数据挖掘用于确定可行的解决方案。这些共同的努力可以减少计算时间并集中搜索可行区域。结果,将提高使用进化算法的结构优化的效率和质量。一些测试问题表明,该方法不仅可以找到全局解,而且对计算的要求也较低。

著录项

  • 来源
    《Engineering Optimization》 |2010年第3期|p.205-222|共18页
  • 作者

    Ting-Yu Chen;

  • 作者单位

    Department of Mechanical Engineering, National Chung Hsing University, Taichung, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号