首页> 外文期刊>Neurocomputing >Image Thresholding Using A Novel Estimation Method In Generalized Gaussian Distribution Mixture Modeling
【24h】

Image Thresholding Using A Novel Estimation Method In Generalized Gaussian Distribution Mixture Modeling

机译:广义高斯分布混合模型中使用新颖估计方法的图像阈值

获取原文
获取原文并翻译 | 示例

摘要

The generalized Gaussian distribution (GGD) mixture model is a parametric statistical model, which is frequently employed to characterize the statistical behavior of a process signal in industry. This paper considers the GGD mixture model to approximate the empirical distributions, especially for those arising from non-Gaussian sources. A new estimation method is developed for fitting the GGD mixture model. The proposed method integrates Particle Swarm Optimization (PSO) from Computational Intelligence and Entropy Matching Estimator (EME) from Statistical Computation to seek the optimal parameter estimates, particularly when there is at least one large shape parameter in the GGD mixture model. Thus, the method is termed PSO+ EME. Applications to multi-level thresholding in image processing are used to illustrate PSO + EME. Image thresholding is a useful technique to separate the interested object from background information. Due to the versatility of the GGD mixture model in characterizing process signals, it is chosen to fit the intensity of image and PSO + EME is used to estimate the parameters. The experimental study shows that the fitted model produced by PSO + EME could depicts quite successfully the non-Gaussian probability density function of image intensity, and therefore present quality effectiveness in the problem of multi-level thresholding.
机译:广义高斯分布(GGD)混合模型是一个参数统计模型,通常用于表征工业过程信号的统计行为。本文考虑了GGD混合模型来近似经验分布,尤其是对于那些来自非高斯源的经验分布。开发了一种新的估算方法来拟合GGD混合模型。该方法将计算智能中的粒子群优化(PSO)与统计计算中的熵匹配估计器(EME)集成在一起,以寻求最佳参数估计,尤其是当GGD混合模型中至少有一个大形状参数时。因此,该方法称为PSO + EME。图像处理中多级阈值的应用用于说明PSO + EME。图像阈值化是一种有用的技术,可以将感兴趣的对象与背景信息分开。由于GGD混合模型在表征过程信号方面的多功能性,因此选择它以适合图像的强度,并使用PSO + EME来估计参数。实验研究表明,由PSO + EME生成的拟合模型可以非常成功地描述图像强度的非高斯概率密度函数,因此在多级阈值化问题中具有质量有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号