首页> 外文期刊>Neurocomputing >Robust sequence memory in sparsely-connected networks with controllable steady-state period
【24h】

Robust sequence memory in sparsely-connected networks with controllable steady-state period

机译:稀疏连接网络中具有稳定状态周期的鲁棒序列存储器

获取原文
获取原文并翻译 | 示例

摘要

A novel sparsely-connected neural network for sequence memory with controllable steady-state period is proposed in this study. By introducing a new exponential kernel sampling function and the sampling interval parameter, the steady-state period can be controlled, and the steady-state time steps is equal to the sampling interval parameter. Ascribing to the exponential kernel sampling function, the sequence storage capacity is enlarged compared with the existing sequence memory models. Owning to the sparsely-connected of Gaussian distribution, the model produces the efficient use of synapse resources, but the sequence storage capacity is decreased compared with the fully-connected networks. The study also gives a significant result that the networks of different dimensions have the same synapse connection efficiency if they are with the same connection mean degree.
机译:提出了一种新颖的稀疏连接神经网络,用于稳定状态周期可控的序列记忆。通过引入新的指数核采样函数和采样间隔参数,可以控制稳态周期,并且稳态时间步长等于采样间隔参数。由于采用了指数核采样函数,因此与现有的序列存储模型相比,序列存储容量有所增加。由于具有稀疏连接的高斯分布,该模型可有效利用突触资源,但与完全连接的网络相比,序列存储容量有所降低。该研究还给出了一个重要的结果,即如果不同维度的网络具有相同的连接平均程度,它们将具有相同的突触连接效率。

著录项

  • 来源
    《Neurocomputing》 |2009年第15期|3123-3130|共8页
  • 作者单位

    College of Information Science and Technology, Donghua University, Shanghai 201620, China;

    College of Information Science and Technology, Donghua University, Shanghai 201620, China;

    College of Information Science and Technology, Donghua University, Shanghai 201620, China;

    College of Information Science and Technology, Donghua University, Shanghai 201620, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    sequence memory; steady-state period; sparsely-connected network; kernel sampling function;

    机译:序列记忆稳态期稀疏连接的网络;核采样函数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号