首页> 外文期刊>Neurocomputing >An information-theoretic approach to feature extraction in competitive learning
【24h】

An information-theoretic approach to feature extraction in competitive learning

机译:一种信息理论的竞争学习特征提取方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new information-theoretic approach to competitive learning and self-organizing maps. We use several information-theoretic measures, such as conditional information and information losses, to extract main features in input patterns. For each competitive unit, conditional information content is used to show how much information on input patterns is contained. In addition, for detecting the importance of each variable, information losses are introduced. The information loss is defined as the difference between information with all input units and information without an input unit. We applied the information loss to conventional competitive learning to show that distinctive features could be extracted by the information loss. Then, we analyzed the self-organizing maps by the conditional information and the information loss. Experimental results showed that main features in input patterns were more clearly detected.
机译:在本文中,我们提出了一种新的信息理论方法来进行竞争性学习和自组织图。我们使用几种信息理论方法(例如条件信息和信息丢失)来提取输入模式中的主要特征。对于每个竞争单位,条件信息内容用于显示包含多少有关输入模式的信息。另外,为了检测每个变量的重要性,引入了信息损失。信息损失定义为具有所有输入单元的信息与不具有输入单元的信息之间的差异。我们将信息丢失应用于常规竞争学习,以显示信息丢失可以提取出鲜明的特征。然后,我们通过条件信息和信息损失分析了自组织图。实验结果表明,输入模式的主要特征被更清晰地检测到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号