首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Feature Extraction Using Information-Theoretic Learning
【24h】

Feature Extraction Using Information-Theoretic Learning

机译:基于信息理论学习的特征提取

获取原文
获取原文并翻译 | 示例

摘要

A classification system typically consists of both a feature extractor (preprocessor) and a classifier. These two components can be trained either independently or simultaneously. The former option has an implementation advantage since the extractor need only be trained once for use with any classifier, whereas the latter has an advantage since it can be used to minimize classification error directly. Certain criteria, such as Minimum Classification Error, are better suited for simultaneous training, whereas other criteria, such as Mutual Information, are amenable for training the feature extractor either independently or simultaneously. Herein, an information-theoretic criterion is introduced and is evaluated for training the extractor independently of the classifier. The proposed method uses nonparametric estimation of Renyi's entropy to train the extractor by maximizing an approximation of the mutual information between the class labels and the output of the feature extractor. The evaluations show that the proposed method, even though it uses independent training, performs at least as well as three feature extraction methods that train the extractor and classifier simultaneously.
机译:分类系统通常由特征提取器(预处理器)和分类器组成。可以独立或同时训练这两个组件。前一个选项具有实现优势,因为提取器只需训练一次即可与任何分类器一起使用,而后者则具有优势,因为它可用于直接使分类错误最小化。某些准则(例如最小分类误差)更适合于同时训练,而其他准则(例如互信息)则适合独立或同时训练特征提取器。在此,引入信息理论标准并对其进行评估,以独立于分类器来训练提取器。所提出的方法通过最大化类标签和特征提取器输出之间的互信息近似值,使用Renyi熵的非参数估计来训练提取器。评估表明,所提出的方法即使使用了独立的训练,也至少执行了同时训练提取器和分类器的三种特征提取方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号