首页> 外文期刊>Neurocomputing >Incremental support vector machine learning in the primal and applications
【24h】

Incremental support vector machine learning in the primal and applications

机译:增量支持向量机学习的初步及应用

获取原文
获取原文并翻译 | 示例

摘要

Most algorithms of support vector machines (SVMs) operate in a batch mode. However, when the samples arrive sequentially, batch implementations of SVMs are computationally demanding due to the fact that they must be retrained from scratch. This paper proposes an incremental SVM algorithm that is suitable for the problems of sequentially arriving samples. Unlike previous SVM techniques, this new incremental SVM learning is implemented in the primal and it shows that the primal problem can be efficiently solved. The effectiveness of the proposed method is illustrated with several data sets including faces, handwritten characters and UCI data sets. These experiments also show that the proposed method is competitive with previously published methods. In addition, the application of the proposed algorithm to leave-one-out cross-validation is demonstrated.
机译:支持向量机(SVM)的大多数算法都以批处理模式运行。但是,当样本顺序到达时,由于必须从头开始对SVM进行批处理,因此SVM的批处理实现在计算上很苛刻。本文提出了一种增量SVM算法,适用于顺序到达样本的问题。与以前的SVM技术不同,这种新的增量SVM学习是在原始中实现的,它表明可以有效解决原始问题。用包括脸部,手写字符和UCI数据集在内的几个数据集说明了该方法的有效性。这些实验还表明,提出的方法与以前发表的方法具有竞争性。另外,证明了该算法在留一法交叉验证中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号