首页> 外文期刊>Neurocomputing >Online fault diagnosis method based on Incremental Support Vector Data Description and Extreme Learning Machine with incremental output structure
【24h】

Online fault diagnosis method based on Incremental Support Vector Data Description and Extreme Learning Machine with incremental output structure

机译:基于增量支持向量数据描述和带增量输出结构的极限学习机的在线故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Online fault diagnosis system should be able to detect faults, recognize fault types and update the discriminating ability and knowledge of itself automatically in real time. But the class number in fault diagnosis is not constant and it is in a dynamic state with new members enrolled. The traditional recognition algorithms are not able to update diagnosis system efficiently when the class number of failure modes is increasing. To solve the problem, an online fault diagnosis method based on Incremental Support Vector Data Description (ISVDD) and Extreme Learning Machine with incremental output structure (IOELM) is proposed. ISVDD is used to find a new failure mode quickly in the continuous condition monitoring of the equipments. The fixed structure of Extreme Learning Machine is changed into an elastic structure whose output nodes could be added incrementally to recognize the new fault mode efficiently. Recognition experiments on the diesel engine under eleven different conditions show that the online fault diagnosis method based on ISVDD and IOELM works well, and the method is also feasible in fault diagnosis of other mechanical equipments.
机译:在线故障诊断系统应能够自动检测故障,识别故障类型并自动更新判别能力和自身知识。但是故障诊断中的类别编号不是恒定的,并且处于动态状态,并且已注册新成员。当故障模式的类别数量增加时,传统的识别算法不能有效地更新诊断系统。针对该问题,提出了一种基于增量支持向量数据描述(ISVDD)和具有增量输出结构的极限学习机(IOELM)的在线故障诊断方法。 ISVDD用于在设备的连续状态监视中快速找到新的故障模式。 Extreme Learning Machine的固定结构变成了弹性结构,可以逐步增加输出节点以有效地识别新的故障模式。在11种不同条件下对柴油机的识别实验表明,基于ISVDD和IOELM的在线故障诊断方法行之有效,在其他机械设备故障诊断中也是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号