首页> 外文期刊>Neurocomputing >An empirical study of two typical locality preserving linear discriminant analysis methods
【24h】

An empirical study of two typical locality preserving linear discriminant analysis methods

机译:两种典型的保留线性判别分析方法的实证研究

获取原文
获取原文并翻译 | 示例

摘要

Laplacian linear discriminant analysis (LapLDA) and semi-supervised discriminant analysis (SDA) are two recently proposed LDA methods. They are developed independently with the aim to improve LDA by introducing a locality preserving regutarization term, and they have proved their effectiveness experimentally on some benchmark datasets. However, both algorithms ignored comparison with much simpler methods such as regularized discriminant analysis (RDA). In this paper, we make an empirical and supplementary study on LapLDA and SDA, and obtain somewhat counterintuitive results: (1) although LapLDA can generally improve the classical LDA via resorting to a complex regularization term, it does not outperform RDA, which is only based on the simplest Tikhonov regularizer; (2) to reevaluate the performance of SDA, we develop purposely a new and much simpler semi-supervised algorithm called globality preserving discriminant analysis (GPDA) and make a comparison with SDA. Surprisingly, we find that GPDA tends to achieve better performance. These two points drive us to reconsider whether one should use or how to use locality preserving strategy in practice. Finally, we discuss the reasons that lead to the possible failure of the locality preserving criterion and provide alternative strategies and suggestions to address these problems.
机译:拉普拉斯线性判别分析(LapLDA)和半监督判别分析(SDA)是最近提出的两种LDA方法。它们是独立开发的,目的是通过引入保留局部语言的保留期限来改善LDA,并且它们已经在一些基准数据集上通过实验证明了其有效性。但是,两种算法都忽略了与更简单的方法(例如正则判别分析(RDA))进行比较。在本文中,我们对LapLDA和SDA进行了实证研究和补充研究,并获得了一些与直觉相反的结果:(1)尽管LapLDA通常可以通过使用复杂的正则化项来改善经典LDA,但它并不比RDA优越。基于最简单的Tikhonov正则化器; (2)为了重新评估SDA的性能,我们有目的地开发了一种新的,更简单的半监督算法,称为全局保留判别分析(GPDA),并与SDA进行了比较。令人惊讶的是,我们发现GPDA倾向于实现更好的性能。这两点促使我们重新考虑在实践中应该使用还是应该使用局部保存策略。最后,我们讨论了导致本地保存准则可能失败的原因,并提供了解决这些问题的替代策略和建议。

著录项

  • 来源
    《Neurocomputing》 |2010年第12期|p.1587-1594|共8页
  • 作者单位

    Department of Computer Science and Engineering, Nanjing University of Aeronautics & Astronautics, 210016 Nanjing, PR China Department of Mathematics Science, Liaocheng University, 252000 Liaocheng, PR China;

    Department of Computer Science and Engineering, Nanjing University of Aeronautics & Astronautics, 210016 Nanjing, PR China Department of Mathematics Science, Liaocheng University, 252000 Liaocheng, PR China;

    Department of Computer Science and Engineering, Nanjing University of Aeronautics & Astronautics, 210016 Nanjing, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    linear discriminant analysis; semi-supervised learning; locality preserving regularizer; graph construction;

    机译:线性判别分析;半监督学习;保留位置的正则化器;图的构造;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号