首页> 外文期刊>Pattern Analysis and Applications >A new linear discriminant analysis algorithm based on L1-norm maximization and locality preserving projection
【24h】

A new linear discriminant analysis algorithm based on L1-norm maximization and locality preserving projection

机译:基于L1范数最大化和保局性投影的线性判别分析新算法

获取原文
获取原文并翻译 | 示例

摘要

Generic L2-norm-based linear discriminant analysis (LDA) is sensitive to outliers and only captures global structure information of sample points. In this paper, a new LDA-based feature extraction algorithm is proposed to integrate both global and local structure information via a unified L1-norm optimization framework. Unlike generic L2-norm-based LDA, the proposed algorithm explicitly incorporates the local structure information of sample points and is robust to outliers. It overcomes the problem of the singularity of within-class scatter matrix as well. Experiments on several popular datasets demonstrate the effectiveness of the proposed algorithm.
机译:基于通用L2范数的线性判别分析(LDA)对异常值敏感,并且仅捕获采样点的全局结构信息。本文提出了一种新的基于LDA的特征提取算法,通过统一的L1-norm优化框架将全局和局部结构信息进行集成。与基于通用L2范数的LDA不同,该算法明确地结合了采样点的局部结构信息,并且对异常值具有鲁棒性。它也克服了类内散布矩阵奇异的问题。在几个流行的数据集上的实验证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号