首页> 外文期刊>Neurocomputing >Recursive robust least squares support vector regression based on maximum correntropy criterion
【24h】

Recursive robust least squares support vector regression based on maximum correntropy criterion

机译:基于最大熵准则的递归鲁棒最小二乘支持向量回归

获取原文
获取原文并翻译 | 示例

摘要

Least squares support vector machine for regression (LSSVR) is an efficient method for function estimation problem. However, its solution is prone to large noise and outliers since it depends on the minimum of the sum of squares error (SSE) on training samples. To tackle this problem, in this paper, a novel regression model termed as recursive robust LSSVR (R~2LSSVR) is proposed to obtain robust estimation for data in the presence of outliers. The idea is to build a regression model in the kernel space based on maximum correntropy criterion and regularization technique. An iterative algorithm derived from half-quadratic optimization is further developed to solve R~2LSSVR with theoretically guaranteed convergence. It also reveals that R~2LSSVR is closely related to the original LSSVR since it essentially solves adaptive weighted LSSVR iteratively. Furthermore, a hyperparameters selection method for R~2LSSVR is presented based on particle swarm optimization (PSO) such that multiple hyperparameters in R~2LSSVR can be estimated effectively for better performance. The feasibility of this method is examined on some simulated and benchmark datasets. The experimental results demonstrate the good robust performance of the proposed method.
机译:最小二乘回归支持向量机(LSSVR)是一种有效的函数估计问题方法。但是,其解决方案容易受到较大噪声和离群值的影响,因为它取决于训练样本的平方误差和(SSE)的最小值。为了解决这个问题,本文提出了一种新的回归模型,称为递归鲁棒LSSVR(R〜2LSSVR),以在存在异常值的情况下获得对数据的鲁棒估计。这个想法是基于最大熵准则和正则化技术在内核空间中建立回归模型。为解决R〜2LSSVR具有理论上的收敛性,进一步开发了一种基于半二次优化的迭代算法。这也表明R〜2LSSVR与原始LSSVR密切相关,因为它本质上是迭代地解决自适应加权LSSVR的。此外,提出了一种基于粒子群算法(PSO)的R〜2LSSVR超参数选择方法,从而可以有效地估计R〜2LSSVR中的多个超参数,以获得更好的性能。在一些模拟和基准数据集上检查了该方法的可行性。实验结果证明了该方法的良好鲁棒性能。

著录项

  • 来源
    《Neurocomputing》 |2012年第2012期|p.63-73|共11页
  • 作者单位

    School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, PR China,School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, PR China;

    School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, PR China;

    Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, PR China;

    School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    support vector machine; correntropy; robust regression; particle swarm optimization;

    机译:支持向量机肾上腺皮质激素稳健回归;粒子群优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号