首页> 外文期刊>Neurocomputing >Semi-supervised distance metric learning based on local linear regression for data clustering
【24h】

Semi-supervised distance metric learning based on local linear regression for data clustering

机译:基于局部线性回归的半监督距离度量学习的数据聚类

获取原文
获取原文并翻译 | 示例

摘要

Distance metric plays an important role in many machine learning tasks. The distance between samples is mostly measured with a predefined metric, ignoring how the samples distribute in the feature space and how the features are correlated. This paper proposes a semi-supervised distance metric learning method by exploring feature correlations. Specifically, unlabeled samples are used to calculate the prediction error by means of local linear regression. Labeled samples are used to learn discriminative ability, that is, maximizing the between-class covariance and minimizing the within-class covariance. We then fuse the knowledge learned from both labeled and unlabeled samples into an overall objective function which can be solved by maximum eigenvectors. Our algorithm explores both labeled and unlabeled information as well as data distribution. Experimental results demonstrates the superiority of our method over several existing algorithms.
机译:距离度量在许多机器学习任务中起着重要作用。样本之间的距离主要是通过预定义的度量来度量的,而忽略了样本在特征空间中的分布方式以及特征之间的关联方式。通过探索特征相关性,提出一种半监督的距离度量学习方法。具体地,未标记的样本用于通过局部线性回归来计算预测误差。带标签的样本用于学习判别能力,即最大化类间协方差并最小化类内协方差。然后,我们将从标记和未标记样本中学习到的知识融合到可以通过最大特征向量解决的整体目标函数中。我们的算法探索标记和未标记的信息以及数据分布。实验结果证明了我们的方法优于几种现有算法的优越性。

著录项

  • 来源
    《Neurocomputing》 |2012年第2012期|p.100-105|共6页
  • 作者单位

    College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, China;

    Computer Science Department, Xiamen University, Xiamen 361005, China;

    Hefei University of Technology, School of Computer and Information, China;

    School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue 639798, Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    semi-supervised learning; distance metric; data clustering;

    机译:半监督学习;距离度量;数据聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号