首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Semi-Supervised Nonlinear Distance Metric Learning via Forests of Max-Margin Cluster Hierarchies
【24h】

Semi-Supervised Nonlinear Distance Metric Learning via Forests of Max-Margin Cluster Hierarchies

机译:最大边距聚类层次结构森林的半监督非线性距离度量学习

获取原文
获取原文并翻译 | 示例

摘要

Metric learning is a key problem for many data mining and machine learning applications, and has long been dominated by Mahalanobis methods. Recent advances in nonlinear metric learning have demonstrated the potential power of non-Mahalanobis distance functions, particularly tree-based functions. We propose a novel nonlinear metric learning method that uses an iterative, hierarchical variant of semi-supervised max-margin clustering to construct a forest of cluster hierarchies, where each individual hierarchy can be interpreted as a weak metric over the data. By introducing randomness during hierarchy training and combining the output of many of the resulting semi-random weak hierarchy metrics, we can obtain a powerful and robust nonlinear metric model. This method has two primary contributions: first, it is semi-supervised, incorporating information from both constrained and unconstrained points. Second, we take a relaxed approach to constraint satisfaction, allowing the method to satisfy different subsets of the constraints at different levels of the hierarchy rather than attempting to simultaneously satisfy all of them. This leads to a more robust learning algorithm. We compare our method to a number of state-of-the-art benchmarks on -nearest neighbor classification, large-scale image retrieval and semi-supervised clustering problems, and find that our algorithm yields results comparable or superior to the state-of-the-art.
机译:公制学习是许多数据挖掘和机器学习应用程序中的关键问题,长期以来一直被Mahalanobis方法所控制。非线性度量学习的最新进展证明了非马氏距离函数(尤其是基于树的函数)的潜在功能。我们提出了一种新颖的非线性度量学习方法,该方法使用迭代的,半监督的最大边距聚类的层次结构变体来构建群集层次结构林,其中每个单独的层次结构都可以解释为数据的弱度量。通过在层次训练中引入随机性,并结合许多由此产生的半随机弱层次度量的输出,我们可以获得强大而强大的非线性度量模型。该方法有两个主要贡献:首先,它是半监督的,并结合了来自约束点和非约束点的信息。其次,我们采用宽松的方法来满足约束条件,使该方法可以在层次结构的不同级别上满足约束条件的不同子集,而不是尝试同时满足所有条件。这导致了更强大的学习算法。我们将我们的方法与-n最近邻分类,大规模图像检索和半监督聚类问题的许多最新基准进行了比较,发现我们的算法产生的结果可与-n状态相媲美或更好。艺术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号