首页> 外文期刊>Neurocomputing >Computational capability of liquid state machines with spike-timing-dependent plasticity
【24h】

Computational capability of liquid state machines with spike-timing-dependent plasticity

机译:具有与峰值定时相关的可塑性的液体状态机的计算能力

获取原文
获取原文并翻译 | 示例

摘要

Liquid state machine (LSM) is a recently developed computational model with a reservoir of recurrent spiking neural network (RSNN). This model has shown to be beneficial for performing computational tasks. In this paper, we present a novel type of LSM with self-organized RSNN instead of the traditional RSNN with random structure. Here, the spike-timing-dependent plasticity (STDP) which has been broadly observed in neurophysiological experiments is employed for the learning update of RSNN. Our computational results show that this model can carry out a class of biologically relevant real-time computational tasks with high accuracy. By evaluating the average mean squared error (MSE), we find that LSM with STDP learning is able to lead to a better performance than LSM with random reservoir, especially for the case of partial synaptic connections.
机译:液体状态机(LSM)是最近开发的具有递归尖峰神经网络(RSNN)的存储库的计算模型。该模型已显示出对执行计算任务有益。在本文中,我们提出了一种具有自组织RSNN的新型LSM,而不是具有随机结构的传统RSNN。在这里,在神经生理学实验中广泛观察到的依赖于时序定时的可塑性(STDP)被用于RSNN的学习更新。我们的计算结果表明,该模型可以高精度地执行一类生物学相关的实时计算任务。通过评估平均均方误差(MSE),我们发现具有STDP学习功能的LSM比具有随机存储器的LSM能够产生更好的性能,尤其是对于部分突触连接的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号