首页> 外文期刊>Neural computation >Reducing the Variability of Neural Responses: A Computational Theory of Spike-Timing-Dependent Plasticity
【24h】

Reducing the Variability of Neural Responses: A Computational Theory of Spike-Timing-Dependent Plasticity

机译:减少神经反应的变异性:依赖于峰值时间的可塑性计算理论

获取原文
获取原文并翻译 | 示例

摘要

Experimental studies have observed synaptic potentiation when a presy-naptic neuron fires shortly before a postsynaptic neuron and synaptic depression when the presynaptic neuron fires shortly after. The dependence of synaptic modulation on the precise timing of the two action potentials is known as spike-timing dependent plasticity (STDP). We derive STDP from a simple computational principle: synapses adapt so as to minimize the postsynaptic neuron's response variability to a given presynaptic input, causing the neuron's output to become more reliable in the face of noise. Using an objective function that minimizes response variability and the biophysically realistic spike-response model of Gerstner (2001), we simulate neurophysiological experiments and obtain the characteristic STDP curve along with other phenomena, including the reduction in synaptic plasticity as synaptic efficacy increases. We compare our account to other efforts to derive STDP from computational principles and argue that our account provides the most comprehensive coverage of the phenomena. Thus, reliability of neural response in the face of noise may be a key goal of unsupervised cortical adaptation.
机译:实验研究已经观察到突触前神经元在突触后神经之前不久触发时的突触增强,而突触前神经元在突触后神经元之后触发时的突触抑制作用。突触调节对两个动作电位的精确定时的依赖性被称为尖峰时序依赖性可塑性(STDP)。我们从一个简单的计算原理中得出STDP:突触适应以使突触后神经元对给定突触前输入的响应变化最小,从而使神经元的输出在面对噪音时变得更加可靠。我们使用一个最小化响应变量的目标函数和Gerstner(2001)的生物物理现实尖峰响应模型,我们模拟了神经生理学实验,并获得了特征性STDP曲线以及其他现象,包括随着突触效力的增加,突触可塑性的降低。我们将我们的说明与从计算原理得出STDP的其他努力进行了比较,并认为我们的说明提供了对现象的最全面覆盖。因此,面对噪声时神经反应的可靠性可能是无监督皮层适应的关键目标。

著录项

  • 来源
    《Neural computation》 |2007年第2期|p.371-403|共33页
  • 作者单位

    Netherlands Centre for Mathematics and Computer Science (CWI), 1098 SJ Amsterdam, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号