首页> 外文期刊>Neurocomputing >Kernel coupled distance metric learning for gait recognition and face recognition
【24h】

Kernel coupled distance metric learning for gait recognition and face recognition

机译:核耦合距离度量学习,用于步态识别和面部识别

获取原文
获取原文并翻译 | 示例

摘要

The performances of biometrics may be adversely impact by different walking states, walking directions, resolutions of gait sequence images, pose variation and low resolution of face images. To address these problems, we presented a kernel coupled distance metric learning (KCDML) method after considering matching among different data collections. By using a kernel trick and a specialized locality preserving criterion, we formulated the problem of kernel coupled distance metric learning as an optimization problem whose aims are to search for the pair-wise samples staying as close as possible and to preserve the local structure intrinsic data geometry. Instead of an iterative solution, one single generalized eigen-decomposition can be leveraged to compute the two transformation matrices for two classifications of data sets. The effectiveness of the proposed method is empirically demonstrated on gait and face recognition tasks' results which outperform four linear subspace solutions' (i.e. CDML, PCA, LPP, LDA) and four nonlinear subspace solutions' (i.e. Huang's method, PCA-RBF, KPCA, KLPP).
机译:生物特征的性能可能受到不同的步行状态,步行方向,步态序列图像的分辨率,姿势变化和面部图像的低分辨率的不利影响。为了解决这些问题,在考虑了不同数据集合之间的匹配之后,我们提出了一种内核耦合距离度量学习(KCDML)方法。通过使用核技巧和专门的局部性保存准则,我们将核耦合距离度量学习问题表述为一个优化问题,其目的是寻找尽可能接近的成对样本并保留局部结构固有数据几何。代替迭代解决方案,可以利用一个单一的广义特征分解来为两个数据集分类计算两个变换矩阵。在步态和面部识别任务的结果上表现出了该方法的有效性,其结果优于四个线性子空间解决方案(即CDML,PCA,LPP,LDA)和四个非线性子空间解决方案(即Huang方法,PCA-RBF,KPCA) ,KLPP)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号