首页> 外文期刊>Neurocomputing >Learning from contextual information of geo-tagged web photos to rank personalized tourism attractions
【24h】

Learning from contextual information of geo-tagged web photos to rank personalized tourism attractions

机译:从带有地理标签的网络照片的上下文信息中学习,以对个性化的旅游景点进行排名

获取原文
获取原文并翻译 | 示例

摘要

This paper proposed a method that fully exploits contextual information of geo-tagged web photos to recommend tourism attractions to a user according to his personal interest and current time and location. The proposed method first detects tourism attractions from geo-tags, and estimates their popularity with users' photo quantity. Photos' taken time is used to discover temporal fluctuation of attractions' popularity and distance of consecutive photos is exploited to model the spatial influence to user's travel behavior. Photos' textual and visual information are used to reveal users' personal interests. Collaborative filtering is also adopted in the recommendation process. With all these contextual information, our method predicts a user's preference to a certain attraction from different aspects, and automatically combines the prediction scores to give the final recommendation result with a learning to rank model. Experiments on Panoramio dataset show that our method performs better than the state-of-the-art method, especially for users with little traveling history.
机译:本文提出了一种方法,该方法可以充分利用带有地理标签的网络照片的上下文信息,根据用户的个人兴趣以及当前时间和位置向其推荐旅游景点。所提出的方法首先从地理标签中检测旅游景点,并根据用户的照片数量估算其受欢迎程度。照片的拍摄时间用于发现景点受欢迎程度的时间波动,而连续照片的距离可用于模拟空间对用户旅行行为的影响。照片的文字和视觉信息用于显示用户的个人兴趣。推荐过程中也采用了协作过滤。利用所有这些上下文信息,我们的方法可以从不同方面预测用户对某种吸引力的偏好,并自动将预测分数组合在一起,以给出最终的推荐结果以及学习排名模型。在Panoramio数据集上进行的实验表明,我们的方法比最新方法的效果更好,特别是对于旅行历史很少的用户而言。

著录项

  • 来源
    《Neurocomputing》 |2013年第7期|17-25|共9页
  • 作者单位

    MOE-Microsoft Key Laboratory of Multimedia Computing and Communication, University of Science and Technology of China, Anhui, China;

    MOE-Microsoft Key Laboratory of Multimedia Computing and Communication, University of Science and Technology of China, Anhui, China;

    MOE-Microsoft Key Laboratory of Multimedia Computing and Communication, University of Science and Technology of China, Anhui, China;

    MOE-Microsoft Key Laboratory of Multimedia Computing and Communication, University of Science and Technology of China, Anhui, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Geo-tagged photo; Contextual information; Tourism recommendation; RankSVM;

    机译:带有地理标签的照片;上下文信息;旅游推荐;等级支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号